Text-Embeddings-Inference项目中的gRPC服务Prometheus监控配置指南
2025-06-24 02:17:26作者:丁柯新Fawn
在Text-Embeddings-Inference项目的gRPC服务镜像中,Prometheus监控功能的配置方式与HTTP服务镜像有所不同。本文将详细介绍如何正确配置和使用gRPC服务中的Prometheus监控功能。
服务架构概述
Text-Embeddings-Inference的gRPC服务镜像采用了双端口设计:
- 3000端口:用于处理gRPC协议请求
- 9000端口:专门用于暴露Prometheus监控指标
这种设计遵循了gRPC服务的最佳实践,将业务接口和监控接口分离,避免了协议冲突。
正确部署方式
要启用Prometheus监控功能,在部署gRPC服务时需要同时暴露两个端口:
docker run -d \
-p 3000:3000 \ # gRPC服务端口
-p 9000:9000 \ # Prometheus监控端口
-v /data:/data \
--pull always \
ghcr.io/huggingface/text-embeddings-inference:0.6-grpc \
--model-id your-model-id \
--revision your-revision
指标访问验证
部署完成后,可以通过以下方式验证监控功能是否正常工作:
- 首先发送一个测试请求到gRPC服务:
grpcurl -d '{"inputs": "What is Deep Learning"}' -plaintext 0.0.0.0:3000 tei.v1.Embed/Embed
- 然后访问Prometheus指标端点:
curl 0.0.0.0:9000
正常响应将包含以下关键指标:
# TYPE te_embed_success counter
te_embed_success 1
# TYPE te_request_success counter
te_request_success{method="single"} 1
# TYPE te_embed_count counter
te_embed_count 1
# TYPE te_request_count counter
te_request_count{method="single"} 1
# TYPE te_queue_size gauge
te_queue_size 0
Prometheus配置示例
在Prometheus的配置文件中,需要正确指向9000端口:
scrape_configs:
- job_name: "text-embeddings-grpc"
scrape_interval: 5s
static_configs:
- targets: ["your-service-address:9000"]
metrics_path: "/"
常见问题解决
-
HTTP协议错误:如果直接访问3000端口会收到HTTP/0.9错误,这是因为gRPC端口不支持HTTP协议访问。
-
指标无法获取:确保9000端口已正确映射,并且防火墙规则允许访问该端口。
-
指标数据不更新:确认服务正在处理请求,因为部分指标是基于请求触发的。
监控指标说明
Text-Embeddings-Inference的gRPC服务提供了丰富的监控指标,主要包括:
- 请求计数:记录成功/失败的请求数量
- 嵌入计数:记录处理的嵌入向量数量
- 队列大小:反映当前待处理请求的积压情况
- 延迟指标:记录请求处理时间分布
- 资源使用:监控CPU/内存等资源消耗
这些指标对于服务性能监控、容量规划和故障诊断都非常有价值。
通过正确配置和使用这些监控功能,用户可以全面掌握gRPC服务的运行状态,及时发现和解决潜在问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881