Ollama-js中embed与embeddings函数的差异解析
2025-06-25 13:33:50作者:贡沫苏Truman
在Ollama-js库的使用过程中,开发者可能会遇到一个困惑:为什么通过ollama.embed函数获取的嵌入向量结果与直接调用Ollama API得到的结果存在显著差异?本文将深入分析这一现象背后的技术原因,帮助开发者正确理解和使用这两个功能。
核心差异
Ollama-js库提供了两个获取嵌入向量的方法:embed()和embeddings()。这两个方法的主要区别在于:
-
embed()函数:这是当前推荐使用的方法,它会返回经过归一化处理的嵌入向量。归一化处理通常会将向量转换为单位长度(即长度为1),这在许多机器学习应用中是有益的,特别是当我们需要计算向量相似度时。
-
embeddings()函数:这是较旧的实现方式,它会返回原始未处理的嵌入向量,与直接调用Ollama API得到的结果一致。这种方法目前已被标记为"deprecated"(不建议使用)。
实际应用示例
假设我们使用"nomic-embed-text:v1.5"模型对"hello"进行嵌入:
// 使用embed函数(归一化结果)
const normalizedResponse = await ollama.embed({
model: 'nomic-embed-text:v1.5',
input: "hello",
});
// 使用embeddings函数(原始结果)
const rawResponse = await ollama.embeddings({
model: 'nomic-embed-text:v1.5',
prompt: "hello",
});
为什么推荐使用embed函数?
归一化处理在实际应用中有几个优势:
-
相似度计算更准确:归一化后的向量在进行余弦相似度计算时更为可靠,因为所有向量都被缩放到相同的尺度。
-
数值稳定性:归一化可以防止数值溢出或下溢问题,这在处理大量向量时尤为重要。
-
一致性:不同模型产生的向量可能具有不同的尺度,归一化可以消除这种差异。
开发者建议
-
在新项目中,应优先使用
embed()函数,除非有特殊需求需要原始嵌入值。 -
如果确实需要与Ollama API完全一致的结果,可以使用
embeddings()函数,但需要注意这可能会在未来版本中被移除。 -
在比较不同系统生成的嵌入向量时,务必确认它们是否经过了相同的预处理(如归一化)。
理解这些差异将帮助开发者在构建基于嵌入向量的应用时做出更明智的选择,确保系统行为的可预测性和一致性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137