PyTorch-Image-Models中特征提取网络加载预训练权重的正确方式
2025-05-04 07:15:12作者:尤峻淳Whitney
在深度学习领域,预训练模型的使用已成为计算机视觉任务中的标准实践。PyTorch-Image-Models(简称timm)作为一个强大的图像模型库,提供了丰富的预训练模型和灵活的接口。本文将深入探讨在该库中如何正确地为特征提取网络加载预训练权重。
问题背景
当使用timm库创建特征提取网络时,开发者可能会遇到权重加载失败的问题。这通常发生在两种场景下:
- 直接通过
checkpoint_path参数加载权重时,由于模型被FeatureGetterNet类包装,导致权重键名不匹配(原始键名前需要添加model.前缀) - 先创建模型再加载权重时,某些网络结构(如Vision Transformer)会修剪部分层,导致state_dict中存在多余键
解决方案
timm库提供了两种主要的权重加载方式,适用于不同场景:
1. 使用pretrained参数加载
推荐在创建模型时就指定预训练权重,这种方式会在模型结构修改前完成权重加载:
model = timm.create_model(
model_name="vit_small_patch16_224",
num_classes=0,
pretrained=True, # 使用内置预训练权重
features_only=True,
)
2. 使用pretrained_cfg覆盖配置
对于自定义权重文件,可以通过pretrained_cfg参数覆盖默认配置:
backbone = timm.create_model(
model_name="vit_small_patch16_224",
num_classes=0,
features_only=True,
pretrained_cfg_overlay=dict(
file="path/to/custom_weights.pth",
num_classes=0,
),
)
这种方式特别适合以下场景:
- 使用本地自定义权重文件
- 需要从非官方源下载权重
- 使用Hugging Face Hub上的模型权重
技术细节
理解这些解决方案背后的原理很重要:
-
权重加载时机:
pretrained参数会在模型结构修改前加载权重,避免了后续包装导致的键名不匹配问题 -
配置覆盖机制:
pretrained_cfg_overlay允许临时修改模型的预训练配置,提供了极大的灵活性 -
特征提取网络:当设置
features_only=True时,timm会使用FeatureGetterNet包装原始模型,这改变了模型结构但保留了特征提取能力
最佳实践
基于项目经验,建议遵循以下实践:
- 优先使用
pretrained参数加载官方支持的预训练权重 - 对于自定义权重,使用
pretrained_cfg_overlay而非直接修改state_dict - 注意Vision Transformer等特殊结构的层修剪行为
- 在特征提取场景下,设置
num_classes=0可以避免不必要的分类层
通过理解这些原理和实践,开发者可以更高效地在PyTorch-Image-Models中使用预训练模型进行特征提取任务。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210