ADRecon 项目使用教程
1. 项目介绍
ADRecon 是一个用于收集和分析 Active Directory 信息的工具。它能够从 Active Directory 环境中提取并整合各种信息,生成一个详细的报告,帮助安全专业人员、审计员、管理员等了解当前 AD 环境的状态。ADRecon 支持从任何连接到网络的工作站运行,即使该工作站不是域成员。此外,它还可以在非特权(即标准域用户)账户的上下文中运行,仅在需要细粒度密码策略、LAPS 和 BitLocker 时才需要特权账户。
2. 项目快速启动
2.1 环境准备
在开始使用 ADRecon 之前,请确保您的系统满足以下要求:
- .NET Framework 3.0 或更高版本
- PowerShell 2.0 或更高版本
- 可选:Microsoft Excel(用于生成报告)
- 可选:远程服务器管理工具(RSAT)
2.2 安装 ADRecon
您可以通过以下两种方式之一安装 ADRecon:
2.2.1 使用 Git 克隆仓库
git clone https://github.com/adrecon/ADRecon.git
2.2.2 下载 ZIP 文件
访问 ADRecon GitHub 页面,点击“Code”按钮并选择“Download ZIP”。
2.3 运行 ADRecon
2.3.1 在域成员主机上运行
PS C:\> .\ADRecon.ps1
2.3.2 在域成员主机上以不同用户身份运行
PS C:\> .\ADRecon.ps1 -DomainController <IP or FQDN> -Credential <domain\username>
2.3.3 在非成员主机上使用 LDAP 运行
PS C:\> .\ADRecon.ps1 -Protocol LDAP -DomainController <IP or FQDN> -Credential <domain\username>
2.3.4 使用特定模块在非成员主机上运行(使用 RSAT)
PS C:\> .\ADRecon.ps1 -Protocol ADWS -DomainController <IP or FQDN> -Credential <domain\username> -Collect Domain,DomainControllers
2.4 生成报告
运行 ADRecon 后,会生成一个包含 CSV 文件的文件夹。您可以使用以下命令生成 Excel 报告:
PS C:\> .\ADRecon.ps1 -GenExcel C:\ADRecon-Report-<timestamp>
3. 应用案例和最佳实践
3.1 安全审计
ADRecon 可以帮助安全审计员快速收集和分析 Active Directory 中的各种信息,生成详细的报告,以便进行安全审计。
3.2 事件响应
在事件响应过程中,ADRecon 可以快速提取关键信息,帮助分析人员了解当前 AD 环境的状态,识别潜在的安全问题。
3.3 渗透测试
渗透测试人员可以使用 ADRecon 收集目标 AD 环境的信息,为后续的渗透测试提供数据支持。
4. 典型生态项目
4.1 BloodHound
BloodHound 是一个用于可视化 Active Directory 环境的工具,可以帮助安全专业人员识别和理解复杂的权限关系。ADRecon 可以与 BloodHound 结合使用,为 BloodHound 提供数据输入。
4.2 PingCastle
PingCastle 是一个用于评估 Active Directory 安全性的工具,可以帮助管理员识别和修复潜在的安全问题。ADRecon 可以与 PingCastle 结合使用,提供更全面的安全评估。
4.3 LAPS (Local Administrator Password Solution)
LAPS 是一个用于管理本地管理员密码的工具,可以帮助管理员定期更改本地管理员密码。ADRecon 可以提取 LAPS 密码信息,帮助管理员进行审计和监控。
通过以上教程,您应该能够快速上手使用 ADRecon,并了解其在不同场景下的应用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00