Foundry项目中的`vm.expectRevert`与Revert错误匹配问题解析
2025-05-26 13:27:38作者:何将鹤
在Solidity智能合约开发中,Foundry测试框架的vm.expectRevert是一个常用的断言方法,用于验证合约调用是否会按预期回滚。然而,近期发现了一个关于错误匹配的边界情况问题,值得开发者注意。
问题现象
当使用vm.expectRevert匹配Error(string)类型的回滚时,会出现意外的匹配失败。具体表现为:
vm.expectRevert(abi.encodeWithSignature("Error(string)", "A"));
revert("A");
预期这两个语句应该匹配成功,但实际上测试会失败,错误信息显示:
[FAIL: Error != expected error: A != revert: A]
技术背景
这个问题源于底层实现的两个关键部分:
- Alloy库的Revert格式化:在Alloy库中,对回滚错误的字符串表示会自动添加"revert: "前缀
- Foundry的错误匹配逻辑:在比较预期错误和实际错误时,直接进行字符串匹配
这种实现差异导致了即使实质上是相同的错误内容,由于格式化前缀的存在,也会被判定为不匹配。
影响范围
这个问题主要影响以下场景:
- 使用
abi.encodeWithSignature("Error(string)",...)明确指定错误类型的测试用例 - 需要精确匹配回滚消息内容的测试场景
值得注意的是,这个问题不会影响简单的字符串匹配方式:
vm.expectRevert("A");
revert("A");
解决方案讨论
开发团队正在考虑两种可能的解决方案:
-
向后兼容方案:
- 保持现有行为不变
- 允许两种形式都能匹配成功
- 优点:不影响现有测试用例
- 缺点:可能掩盖一些边界情况
-
破坏性变更方案:
- 严格区分错误类型匹配和字符串匹配
- 优点:行为更明确
- 缺点:需要修改现有测试用例
开发者建议
在当前版本中,开发者可以采取以下临时解决方案:
- 对于需要精确匹配
Error(string)的情况,可以手动添加"revert: "前缀:
vm.expectRevert(abi.encodeWithSignature("Error(string)", "revert: A"));
revert("A");
- 或者使用简单的字符串匹配方式(如果不需要区分错误类型):
vm.expectRevert("A");
revert("A");
总结
这个问题展示了Solidity错误处理机制与测试框架之间微妙的交互关系。作为开发者,理解这些底层细节有助于编写更健壮的测试用例。建议关注Foundry的更新,以获得最终的官方解决方案。在编写测试时,应根据实际需求选择合适的错误匹配方式,并注意测试框架的版本变化可能带来的影响。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137