Ragas项目中answer_relevancy指标NaN值问题的分析与解决
问题背景
在使用Ragas评估框架进行RAG系统评估时,开发者经常会遇到answer_relevancy指标返回NaN值的问题。这个问题在使用Azure OpenAI服务时尤为常见,特别是在结合LangChain和Ragas进行系统评估的场景下。
问题现象
当开发者尝试使用Ragas的evaluate函数评估RAG系统输出时,faithfulness指标能够正常工作,但answer_relevancy指标却返回NaN值。错误信息中可能会包含"NotFoundError(Error code: 404)"或者"AttributeError: 'AzureChatOpenAI' object has no attribute 'set_run_config'"等提示。
根本原因分析
经过深入分析,这个问题主要由以下几个因素导致:
-
版本兼容性问题:不同版本的Ragas、OpenAI和LangChain之间存在兼容性问题,特别是当使用较新版本的库时。
-
Azure OpenAI配置问题:在使用Azure OpenAI服务时,API端点、部署名称等配置不正确或不完整。
-
初始化顺序问题:指标初始化顺序不当,导致LLM和embeddings未能正确注入到评估指标中。
-
环境变量缺失:必要的环境变量如AZURE_OPENAI_API_KEY未正确设置。
解决方案
1. 使用兼容的库版本
经过验证,以下库版本组合能够稳定工作:
openpyxl
datasets==2.19.1
ragas==0.1.5
openai==1.16.0
建议开发者先卸载现有依赖,然后按照上述版本重新安装。
2. 正确的初始化流程
对于Azure OpenAI服务的初始化,需要特别注意以下几点:
from langchain_openai.chat_models import AzureChatOpenAI
from langchain_openai.embeddings import AzureOpenAIEmbeddings
# 正确初始化Azure聊天模型
azure_model = AzureChatOpenAI(
openai_api_version="2023-05-15",
azure_endpoint="https://your-endpoint.openai.azure.com/",
azure_deployment="your-deployment-name",
model="your-model-name",
validate_base_url=False,
)
# 正确初始化Azure embeddings
azure_embeddings = AzureOpenAIEmbeddings(
openai_api_version="2023-05-15",
azure_endpoint="https://your-endpoint.openai.azure.com/",
azure_deployment="your-embedding-deployment",
model="text-embedding-ada-002",
)
3. 环境变量设置
确保在代码执行前正确设置了必要的环境变量:
import os
os.environ["AZURE_OPENAI_API_KEY"] = "your-actual-api-key"
4. 评估流程优化
在评估时,建议先单独测试answer_relevancy指标,确认其能够正常工作后再进行完整评估:
from ragas import evaluate
from ragas.metrics import answer_relevancy
# 先单独测试answer_relevancy
result = evaluate(
dataset,
metrics=[answer_relevancy],
llm=azure_model,
embeddings=azure_embeddings
)
最佳实践建议
-
版本控制:在项目开始时明确记录所有依赖库的版本,避免后续升级导致兼容性问题。
-
分步验证:先验证单个指标的工作情况,再逐步增加评估指标。
-
错误处理:在评估代码中加入适当的错误处理和日志记录,便于快速定位问题。
-
资源监控:监控API调用情况,确保没有超出配额或频率限制。
总结
Ragas框架中的answer_relevancy指标返回NaN值问题通常与环境配置和版本兼容性相关。通过使用经过验证的库版本组合、正确初始化Azure OpenAI服务以及确保环境变量设置完整,开发者可以有效解决这一问题。在实际项目中,建议开发者遵循上述最佳实践,以确保评估流程的稳定性和可靠性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









