Ragas项目中answer_relevancy指标NaN值问题的分析与解决
问题背景
在使用Ragas评估框架进行RAG系统评估时,开发者经常会遇到answer_relevancy指标返回NaN值的问题。这个问题在使用Azure OpenAI服务时尤为常见,特别是在结合LangChain和Ragas进行系统评估的场景下。
问题现象
当开发者尝试使用Ragas的evaluate函数评估RAG系统输出时,faithfulness指标能够正常工作,但answer_relevancy指标却返回NaN值。错误信息中可能会包含"NotFoundError(Error code: 404)"或者"AttributeError: 'AzureChatOpenAI' object has no attribute 'set_run_config'"等提示。
根本原因分析
经过深入分析,这个问题主要由以下几个因素导致:
-
版本兼容性问题:不同版本的Ragas、OpenAI和LangChain之间存在兼容性问题,特别是当使用较新版本的库时。
-
Azure OpenAI配置问题:在使用Azure OpenAI服务时,API端点、部署名称等配置不正确或不完整。
-
初始化顺序问题:指标初始化顺序不当,导致LLM和embeddings未能正确注入到评估指标中。
-
环境变量缺失:必要的环境变量如AZURE_OPENAI_API_KEY未正确设置。
解决方案
1. 使用兼容的库版本
经过验证,以下库版本组合能够稳定工作:
openpyxl
datasets==2.19.1
ragas==0.1.5
openai==1.16.0
建议开发者先卸载现有依赖,然后按照上述版本重新安装。
2. 正确的初始化流程
对于Azure OpenAI服务的初始化,需要特别注意以下几点:
from langchain_openai.chat_models import AzureChatOpenAI
from langchain_openai.embeddings import AzureOpenAIEmbeddings
# 正确初始化Azure聊天模型
azure_model = AzureChatOpenAI(
openai_api_version="2023-05-15",
azure_endpoint="https://your-endpoint.openai.azure.com/",
azure_deployment="your-deployment-name",
model="your-model-name",
validate_base_url=False,
)
# 正确初始化Azure embeddings
azure_embeddings = AzureOpenAIEmbeddings(
openai_api_version="2023-05-15",
azure_endpoint="https://your-endpoint.openai.azure.com/",
azure_deployment="your-embedding-deployment",
model="text-embedding-ada-002",
)
3. 环境变量设置
确保在代码执行前正确设置了必要的环境变量:
import os
os.environ["AZURE_OPENAI_API_KEY"] = "your-actual-api-key"
4. 评估流程优化
在评估时,建议先单独测试answer_relevancy指标,确认其能够正常工作后再进行完整评估:
from ragas import evaluate
from ragas.metrics import answer_relevancy
# 先单独测试answer_relevancy
result = evaluate(
dataset,
metrics=[answer_relevancy],
llm=azure_model,
embeddings=azure_embeddings
)
最佳实践建议
-
版本控制:在项目开始时明确记录所有依赖库的版本,避免后续升级导致兼容性问题。
-
分步验证:先验证单个指标的工作情况,再逐步增加评估指标。
-
错误处理:在评估代码中加入适当的错误处理和日志记录,便于快速定位问题。
-
资源监控:监控API调用情况,确保没有超出配额或频率限制。
总结
Ragas框架中的answer_relevancy指标返回NaN值问题通常与环境配置和版本兼容性相关。通过使用经过验证的库版本组合、正确初始化Azure OpenAI服务以及确保环境变量设置完整,开发者可以有效解决这一问题。在实际项目中,建议开发者遵循上述最佳实践,以确保评估流程的稳定性和可靠性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









