HtmlSanitizer项目中处理JSON-LD脚本的安全实践
在Web开发中,JSON-LD(基于JSON的链接数据)是一种常用的结构化数据格式,通常通过<script type="application/ld+json">标签嵌入HTML文档中。然而,在处理这类脚本时,开发者需要特别注意安全问题,既要保留JSON-LD的功能性,又要防止潜在的XSS攻击。
JSON-LD脚本的安全挑战
JSON-LD脚本虽然声明了特定的MIME类型,但其中可能包含恶意构造的内容。例如,攻击者可能在JSON字符串中嵌入HTML闭合标签,试图提前终止JSON-LD脚本并注入恶意JavaScript代码。这种攻击方式利用了浏览器解析HTML和JavaScript的顺序特性。
HtmlSanitizer的解决方案
HtmlSanitizer提供了灵活的机制来处理这类特殊情况。通过监听RemovingTag事件,开发者可以定制化地保留特定类型的脚本标签:
sanitizer.RemovingTag += (s, e) => e.Cancel = e.Tag is IHtmlScriptElement script
&& script.Type == "application/ld+json";
这段代码会阻止HtmlSanitizer移除所有类型为application/ld+json的脚本标签,确保结构化数据能够正常保留。
JSON内容的安全处理
仅仅保留JSON-LD脚本标签是不够的,还需要对JSON内容本身进行安全处理:
-
HTML特殊字符转义:JSON字符串中的HTML特殊字符(如
<,>,&等)应该被正确转义,防止它们被浏览器解释为HTML标签。 -
JSON验证:确保JSON格式正确,避免语法错误导致解析异常。
-
内容过滤:根据应用场景,可能需要限制JSON中可以包含的字段和值类型。
实际案例分析
考虑以下恶意构造的JSON-LD示例:
<script type="application/ld+json">
{
"@context": "http://json-ld.org/contexts/person.jsonld",
"name": "</script><script>alert('xss');</script>",
"other": "value"
}
</script>
如果不做处理,这段代码会导致浏览器提前结束JSON-LD脚本并执行注入的JavaScript。HtmlSanitizer的默认行为会截断这种攻击,但更完善的解决方案应该包括:
- 在服务器端生成JSON-LD时对所有字符串值进行HTML编码
- 使用专门的JSON-LD处理器验证数据
- 限制JSON-LD中允许的字段和结构
最佳实践建议
-
生成阶段防护:在生成JSON-LD数据时就进行安全处理,而不是依赖后期的HTML净化。
-
内容安全策略:配合使用CSP(内容安全策略)进一步限制脚本执行。
-
双重验证:既在服务器端验证JSON-LD结构,也在客户端使用HtmlSanitizer进行HTML层面的防护。
-
最小权限原则:只允许必要的字段出现在JSON-LD中,避免暴露敏感信息。
通过结合HtmlSanitizer的特性和这些安全实践,开发者可以既保留JSON-LD的功能性,又有效防范XSS攻击,构建更加安全的Web应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00