HtmlSanitizer项目中处理JSON-LD脚本的安全实践
在Web开发中,JSON-LD(基于JSON的链接数据)是一种常用的结构化数据格式,通常通过<script type="application/ld+json">标签嵌入HTML文档中。然而,在处理这类脚本时,开发者需要特别注意安全问题,既要保留JSON-LD的功能性,又要防止潜在的XSS攻击。
JSON-LD脚本的安全挑战
JSON-LD脚本虽然声明了特定的MIME类型,但其中可能包含恶意构造的内容。例如,攻击者可能在JSON字符串中嵌入HTML闭合标签,试图提前终止JSON-LD脚本并注入恶意JavaScript代码。这种攻击方式利用了浏览器解析HTML和JavaScript的顺序特性。
HtmlSanitizer的解决方案
HtmlSanitizer提供了灵活的机制来处理这类特殊情况。通过监听RemovingTag事件,开发者可以定制化地保留特定类型的脚本标签:
sanitizer.RemovingTag += (s, e) => e.Cancel = e.Tag is IHtmlScriptElement script
&& script.Type == "application/ld+json";
这段代码会阻止HtmlSanitizer移除所有类型为application/ld+json的脚本标签,确保结构化数据能够正常保留。
JSON内容的安全处理
仅仅保留JSON-LD脚本标签是不够的,还需要对JSON内容本身进行安全处理:
-
HTML特殊字符转义:JSON字符串中的HTML特殊字符(如
<,>,&等)应该被正确转义,防止它们被浏览器解释为HTML标签。 -
JSON验证:确保JSON格式正确,避免语法错误导致解析异常。
-
内容过滤:根据应用场景,可能需要限制JSON中可以包含的字段和值类型。
实际案例分析
考虑以下恶意构造的JSON-LD示例:
<script type="application/ld+json">
{
"@context": "http://json-ld.org/contexts/person.jsonld",
"name": "</script><script>alert('xss');</script>",
"other": "value"
}
</script>
如果不做处理,这段代码会导致浏览器提前结束JSON-LD脚本并执行注入的JavaScript。HtmlSanitizer的默认行为会截断这种攻击,但更完善的解决方案应该包括:
- 在服务器端生成JSON-LD时对所有字符串值进行HTML编码
- 使用专门的JSON-LD处理器验证数据
- 限制JSON-LD中允许的字段和结构
最佳实践建议
-
生成阶段防护:在生成JSON-LD数据时就进行安全处理,而不是依赖后期的HTML净化。
-
内容安全策略:配合使用CSP(内容安全策略)进一步限制脚本执行。
-
双重验证:既在服务器端验证JSON-LD结构,也在客户端使用HtmlSanitizer进行HTML层面的防护。
-
最小权限原则:只允许必要的字段出现在JSON-LD中,避免暴露敏感信息。
通过结合HtmlSanitizer的特性和这些安全实践,开发者可以既保留JSON-LD的功能性,又有效防范XSS攻击,构建更加安全的Web应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00