ArduinoJson中动态过滤器的内存管理问题解析
2025-05-31 11:34:08作者:彭桢灵Jeremy
问题背景
在使用ArduinoJson库进行JSON数据处理时,开发者经常会遇到需要根据特定条件过滤JSON数据的需求。本文通过一个实际案例,分析在使用动态过滤器时可能遇到的内存管理问题及其解决方案。
案例描述
开发者StefT09在使用ArduinoJson 6.21.5版本时遇到了一个奇怪的现象:当使用字符串字面量定义过滤器时,JSON数据能够被正确过滤;但当使用字符数组变量定义相同的过滤器时,只有第一个过滤条件生效。
成功案例代码
StaticJsonDocument<64> filter;
JsonObject filter_values = filter.createNestedObject("values");
filter_values["2024-10-31"] = true;
filter_values["2024-11-01"] = true;
filter_values["2024-11-02"] = true;
失败案例代码
char rteHier[11] = {0};
char rteJour[11] = {0};
char rteDemain[11] = {0};
// 填充日期值...
StaticJsonDocument<64> filter;
JsonObject filter_values = filter.createNestedObject("values");
filter_values[rteJour] = true;
filter_values[rteHier] = true;
filter_values[rteDemain] = true;
问题分析
内存分配差异
-
字符串字面量处理:当使用字符串字面量(如"2024-10-31")作为键时,ArduinoJson不需要额外内存来存储这些字符串,因为它们作为常量存储在程序内存中。
-
字符数组处理:当使用字符数组变量(如rteJour)作为键时,ArduinoJson需要在文档内部创建这些字符串的副本,这会消耗额外的内存空间。
内存不足的影响
在失败案例中,StaticJsonDocument<64>分配的内存不足以存储三个日期字符串的副本。当内存不足时:
- 只有第一个键能够被成功添加
- 后续的键添加操作会失败
- 导致过滤器只包含第一个条件
解决方案
方法一:增加过滤器容量
- 使用ArduinoJson Assistant工具计算所需容量
- 确保取消勾选"Assume keys are const char*"选项
- 对于三个日期键的情况,建议容量至少为128字节
修正后的代码:
StaticJsonDocument<128> filter; // 增加容量
JsonObject filter_values = filter.createNestedObject("values");
filter_values[rteJour] = true;
filter_values[rteHier] = true;
filter_values[rteDemain] = true;
方法二:升级到ArduinoJson 7
ArduinoJson 7版本改进了内存管理机制,能够自动处理内存分配问题,简化了开发者的工作。
技术要点总结
- 字符串存储机制:理解字符串字面量和字符数组在内存中的不同存储方式
- 内存预分配:StaticJsonDocument需要预先分配足够内存来存储所有数据
- 容量计算:动态键值会消耗额外内存,必须考虑在内
- 版本选择:新版本库通常会优化内存管理,值得考虑升级
最佳实践建议
- 对于固定键值,优先使用字符串字面量
- 对于动态键值,确保分配足够内存
- 使用工具精确计算所需内存
- 考虑升级到最新版本以获得更好的内存管理
通过理解这些原理,开发者可以避免类似的内存管理问题,更高效地使用ArduinoJson库处理JSON数据。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133