ArduinoJson中动态过滤器的内存管理问题解析
2025-05-31 15:03:27作者:彭桢灵Jeremy
问题背景
在使用ArduinoJson库进行JSON数据处理时,开发者经常会遇到需要根据特定条件过滤JSON数据的需求。本文通过一个实际案例,分析在使用动态过滤器时可能遇到的内存管理问题及其解决方案。
案例描述
开发者StefT09在使用ArduinoJson 6.21.5版本时遇到了一个奇怪的现象:当使用字符串字面量定义过滤器时,JSON数据能够被正确过滤;但当使用字符数组变量定义相同的过滤器时,只有第一个过滤条件生效。
成功案例代码
StaticJsonDocument<64> filter;
JsonObject filter_values = filter.createNestedObject("values");
filter_values["2024-10-31"] = true;
filter_values["2024-11-01"] = true;
filter_values["2024-11-02"] = true;
失败案例代码
char rteHier[11] = {0};
char rteJour[11] = {0};
char rteDemain[11] = {0};
// 填充日期值...
StaticJsonDocument<64> filter;
JsonObject filter_values = filter.createNestedObject("values");
filter_values[rteJour] = true;
filter_values[rteHier] = true;
filter_values[rteDemain] = true;
问题分析
内存分配差异
-
字符串字面量处理:当使用字符串字面量(如"2024-10-31")作为键时,ArduinoJson不需要额外内存来存储这些字符串,因为它们作为常量存储在程序内存中。
-
字符数组处理:当使用字符数组变量(如rteJour)作为键时,ArduinoJson需要在文档内部创建这些字符串的副本,这会消耗额外的内存空间。
内存不足的影响
在失败案例中,StaticJsonDocument<64>分配的内存不足以存储三个日期字符串的副本。当内存不足时:
- 只有第一个键能够被成功添加
- 后续的键添加操作会失败
- 导致过滤器只包含第一个条件
解决方案
方法一:增加过滤器容量
- 使用ArduinoJson Assistant工具计算所需容量
- 确保取消勾选"Assume keys are const char*"选项
- 对于三个日期键的情况,建议容量至少为128字节
修正后的代码:
StaticJsonDocument<128> filter; // 增加容量
JsonObject filter_values = filter.createNestedObject("values");
filter_values[rteJour] = true;
filter_values[rteHier] = true;
filter_values[rteDemain] = true;
方法二:升级到ArduinoJson 7
ArduinoJson 7版本改进了内存管理机制,能够自动处理内存分配问题,简化了开发者的工作。
技术要点总结
- 字符串存储机制:理解字符串字面量和字符数组在内存中的不同存储方式
- 内存预分配:StaticJsonDocument需要预先分配足够内存来存储所有数据
- 容量计算:动态键值会消耗额外内存,必须考虑在内
- 版本选择:新版本库通常会优化内存管理,值得考虑升级
最佳实践建议
- 对于固定键值,优先使用字符串字面量
- 对于动态键值,确保分配足够内存
- 使用工具精确计算所需内存
- 考虑升级到最新版本以获得更好的内存管理
通过理解这些原理,开发者可以避免类似的内存管理问题,更高效地使用ArduinoJson库处理JSON数据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896