LMDeploy在Arm架构GH200平台上的部署实践
背景介绍
LMDeploy作为InternLM推出的高效推理工具链,在x86架构上已经得到了广泛应用。然而,在Arm架构的GH200平台上部署时,开发者可能会遇到一些特殊挑战,特别是与Triton依赖相关的兼容性问题。
核心问题分析
在Arm架构的GH200平台上部署LMDeploy时,主要面临两个关键问题:
-
Triton版本兼容性问题:LMDeploy要求Triton版本在3.0.0到3.1.0之间,但官方PyPI仓库并未提供Arm平台的Triton预编译包。即使开发者从源码构建了Triton 3.2.0版本,也无法满足LMDeploy的版本要求。
-
引擎选择限制:默认情况下,如果Turbomind引擎无法正确安装,LMDeploy会回退到纯Python实现的PytorchEngine,这可能导致性能上的损失。
解决方案
针对这些问题,我们推荐以下解决方案:
-
源码构建Triton 3.1.0:开发者需要从Triton的GitHub仓库检出3.1.0版本,并在本地进行编译安装。这一步骤需要确保系统已安装所有必要的构建工具和依赖项。
-
完整源码构建LMDeploy:仅仅使用
pip install -e .命令安装LMDeploy是不够的,这只会安装Python部分的代码。要启用Turbomind引擎,必须按照官方文档进行完整的源码构建,包括C++和CUDA部分。 -
环境隔离:建议使用虚拟环境(如venv或conda)来管理依赖关系,避免系统级别的包冲突。
实施步骤
- 创建并激活Python虚拟环境
- 从源码构建并安装Triton 3.1.0
- 克隆LMDeploy仓库
- 执行完整的构建流程,包括C++/CUDA部分
- 验证安装,确保Turbomind引擎可用
注意事项
-
版本控制:严格遵循LMDeploy对依赖版本的精确要求,特别是Triton的3.0.0-3.1.0范围。
-
构建环境:确保构建环境配置正确,包括CUDA工具链、编译器版本等。
-
性能测试:安装完成后,建议进行基准测试,比较Turbomind引擎和PytorchEngine的性能差异。
结论
通过上述方法,开发者可以在Arm架构的GH200平台上成功部署LMDeploy并启用其高性能的Turbomind引擎。这一过程虽然比x86平台上的部署更为复杂,但通过精确控制依赖版本和完整的源码构建,仍然可以获得与x86平台相当的性能表现。
对于需要在异构计算环境中部署大模型推理服务的团队来说,掌握这些跨平台部署技巧将大大扩展模型服务的部署灵活性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00