【亲测免费】 mRMR(最小冗余最大相关)特征选择算法技术文档
2026-01-25 05:05:23作者:谭伦延
概览
mRMR,即“最小冗余-最大相关”,是一种高效的特征选择算法。它旨在寻找机器学习任务中最小但至关重要的特征子集,对于优化内存消耗、处理速度、性能提升以及增强结果可解释性至关重要。
为何独特
mRMR的独特之处在于其最小优化策略,专注于找到最少但最相关的特征集合,与多数识别所有相关特征的“全相关”方法(如Boruta或基于正向特征重要性的方法)形成鲜明对比。
应用场景
由于其高效性,mRMR非常适合需要频繁且自动执行特征选择的实际机器学习应用场景,特别是在时间限制下。例如,**优步(Uber)**在2019年分享了他们在营销机器学习平台中采用mRMR的成功案例。
安装指南
要将此包安装到您的Python环境中,可通过pip执行以下命令:
pip install mrmr_selection
之后,在代码中通过以下语句导入mRMR库:
import mrmr
使用说明
该库支持多种数据处理工具,包括Pandas、Polars、Spark和Google BigQuery,每种工具都有对应的模块,至少包含mrmr_classif和mrmr_regression两个函数,分别用于分类和回归任务的特征选择。
示例:Pandas中的使用
假设您有一个Pandas DataFrame (X) 和一个目标变量Series (y)。
import pandas as pd
from sklearn.datasets import make_classification
from mrmr import mrmr_classif
X, y = make_classification(n_samples=1000, n_features=50, n_informative=10, n_redundant=40)
X = pd.DataFrame(X)
y = pd.Series(y)
selected_features = mrmr_classif(X=X, y=y, K=10) # 选取前10个特征
示例:其他工具使用
- Polars、Spark 和 Google BigQuery 的使用方式类似,只需调整相应的导入部分并使用相应模块下的函数,确保正确指定数据结构和目标列名即可。比如对于Polars:
import polars as pl
from mrmr import mrmr_regression
# 创建或加载Polars DataFrame
df_polars = pl.from_pandas(pd.DataFrame(...)) # 假设转换自Pandas或直接创建
selected_features = mrmr.polars.mrmr_regression(df=df_polars, target_column="target", K=2)
API使用文档简述
- mrmr_classif(X, y, K): 适用于分类任务,
X是特征矩阵,y为目标变量,K为要选择的特征数。 - mrmr_regression(X, y, K): 同样是输入特征和目标,但适用于回归任务。
每个函数返回一个列表,包含了按mRMR标准排序后的特征名称,从最相关到最不相关。
结论
利用mRMR算法能够有效地减少机器学习模型的维度,提高效率和理解性。结合本库提供的接口,开发者可以轻松地将其集成到自己的项目中,无论是大数据框架还是简单的数据分析流程中。记住,合理选择特征是构建强大而简洁模型的关键步骤。
以上文档以Markdown格式提供,便于整合入项目文档或在线共享。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134