Bittensor v9.4.0版本发布:增强区块链交互与测试稳定性
Bittensor是一个开源的分布式机器学习网络协议,它通过区块链技术构建了一个去中心化的机器学习市场。该项目允许机器学习模型通过点对点网络进行协作和交易,创造了一个开放、透明的AI生态系统。最新发布的v9.4.0版本带来了一系列重要的改进和新功能。
核心功能增强
本次更新中,最值得关注的是新增了timelock
模块,这个模块为Bittensor网络提供了时间锁定功能。时间锁定是区块链中常见的安全机制,可以确保某些操作只能在特定时间后执行,增加了网络的安全性和可预测性。
另一个重要改进是添加了start_call
外部调用方法到SDK中。这个功能允许开发者更灵活地与Bittensor区块链进行交互,特别是在处理智能合约调用时提供了更多控制选项。
测试稳定性提升
开发团队针对测试套件进行了多项优化,特别是解决了test_incentive
、test_commit_weights
和test_set_weights
测试中的不稳定行为。这些改进确保了测试结果的可靠性,为开发者提供了更稳定的开发环境。
对于test_commit_reveal_v3.py
中的等待逻辑也进行了重构,进一步提升了测试的稳定性和执行效率。这些改进虽然对最终用户不可见,但对于维护代码质量和确保网络稳定性至关重要。
开发者体验优化
在开发者工具方面,本次更新增加了get_next_epoch_start_block
方法到Async/Subtensor接口中。这个方法可以帮助开发者更精确地预测和计划与区块链周期相关的操作。
针对PyTorch 2.6.0+版本的兼容性支持也被加入,确保Bittensor能够与最新的机器学习框架版本协同工作。同时,移除了requirements
目录和cubit
作为额外依赖,简化了项目的依赖管理。
文档与贡献指南改进
项目文档也得到了更新和完善,包括替换了过期的Discord链接,添加了新的徽章标识,以及更新了贡献指南中的超链接。这些改进使得新贡献者能够更轻松地参与到项目中来。
特别值得一提的是,多个社区成员首次为项目做出了贡献,这表明Bittensor社区正在不断壮大和活跃。
错误修复与性能优化
本次发布还包含多项错误修复,包括修复了AxonInfo初始化问题、改进了异步Subtensor中的错误处理机制,以及修正了异步设置子网身份外部调用时的签名问题。
在网络层面,Dendrite组件现在会将ClientOSError记录为调试信息,减少了不必要的日志噪音。同时移除了rao
端点设置,简化了网络配置。
这些改进共同提升了Bittensor网络的稳定性、安全性和易用性,为构建更强大的去中心化机器学习基础设施奠定了基础。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









