推荐:GG-CNN + Multi-View Picking - 改善杂物中的抓取技术
2024-05-30 23:54:35作者:魏侃纯Zoe
在机器人领域,高效和可靠的抓取策略对于自动化处理任务至关重要。今天,我们要介绍一个创新的开源项目——GG-CNN + Multi-View Picking,这是一种用于改善杂乱环境中抓握效果的先进方法。该系统由Douglas Morrison、Peter Corke和Jürgen Leitner共同开发,并在2019年国际机器人与自动化会议(ICRA)上发表。
1、项目介绍
GG-CNN + Multi-View Picking 是一款专为Franka Emika Panda机器人设计的抓取系统,利用了多视角选择(Next-best-view Reaching)策略,以提高在复杂环境下的抓取成功率。它结合了Generative Grasp CNN(GG-CNN)和实时的抓握合成方法,实现了智能的抓取决策。
2、项目技术分析
该项目的核心是基于GG-CNN的抓取模型,该模型能够预测物体的可抓性并生成最优的抓握策略。通过集成多视角选取策略,系统可以在执行抓取前预览不同角度,从而选择最佳视角避免障碍物或提高抓取稳定度。此外,项目还提供了针对DYMO M10秤的接口,可选地用于检测抓取成功与否。
3、应用场景
适用于各种工业和科研场景,如仓库自动化、实验室自动化实验以及杂货店物品拣选等。尤其在处理杂乱无章或者空间受限的环境时,该系统的多功能性和灵活性能显著提升效率。
4、项目特点
- 智能选取最佳视角:系统能在执行抓取前动态评估多个视角,确保最优抓握。
- GG-CNN集成:利用强大的深度学习模型进行实时的抓握预测和策略生成。
- 兼容性强:尽管主要针对Franka Emika Panda机器人,但其核心算法可以适应不同的硬件平台。
- 易于部署:提供清晰的安装指南和运行脚本,简化了在ROS Kinetic环境中的配置和操作。
如果您正在寻找一种可以提高机器人抓取性能的解决方案,那么GG-CNN + Multi-View Picking无疑是一个值得尝试的选择。立即加入社区,探索这个项目的潜力,并为您的机器人应用带来新的突破!
引用该工作时,请参考以下文献:
@inproceedings{morrison2019multiview,
title={{Multi-View Picking: Next-best-view Reaching for Improved Grasping in Clutter}},
author={Morrison, Douglas and Corke, Peter and Leitner, J\"urgen},
booktitle={2019 IEEE International Conference on Robotics and Automation (ICRA)},
year={2019}
}
@inproceedings{morrison2018closing,
title={{Closing the Loop for Robotic Grasping: A Real-time, Generative Grasp Synthesis Approach}},
author={Morrison, Douglas and Corke, Peter and Leitner, J\"urgen},
booktitle={Proc.\ of Robotics: Science and Systems (RSS)},
year={2018}
}
如有任何问题或反馈,欢迎联系Doug Morrison。现在就开始您的探索之旅吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
87
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
433
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19