LiteLoaderQQNT-OneBotApi语音消息发送问题解析
2025-07-01 03:13:29作者:钟日瑜
问题背景
在使用LiteLoaderQQNT-OneBotApi进行语音消息发送时,开发者可能会遇到语音消息无法正常发送的问题。本文详细分析了该问题的原因及解决方案,并提供了相关的技术实现细节。
问题现象
开发者尝试通过API发送语音消息时,虽然接口返回"发送成功"的状态,但实际上消息并未成功发送。具体表现为:
- 使用ffmpeg转换后的.amr格式音频文件
- 通过POST请求发送到/send_msg接口
- 服务端返回200状态码和"发送成功"消息
- 但实际群聊中并未收到语音消息
根本原因
经过分析,发现问题的根本原因在于消息类型字段设置错误。在LiteLoaderQQNT-OneBotApi的实现中:
- 正确的语音消息类型应为"voice"
- 但开发者错误地使用了"record"作为类型标识
解决方案
修改消息类型字段即可解决该问题:
{
"message_type": "group",
"group_id": 701339984,
"message": [
{
"type": "voice", // 将"record"改为"voice"
"data": {
"file": "http://127.0.0.1:8021/audio.amr"
}
}
],
"auto_escape": true
}
音频格式转换建议
虽然问题主要出在消息类型上,但音频格式转换也是语音消息发送的重要环节。以下是使用ffmpeg进行音频转换的技术要点:
-
推荐参数设置:
- 单声道(-ac 1)
- 8000Hz采样率(-ar 8000)
- AMR格式输出
-
Java实现示例:
public static void transferMp3Amr(String mp3Path, String target) {
File source = new File(path);
try {
if (!source.exists()) {
throw new Exception("文件不存在!");
}
List<String> commend = new ArrayList<String>();
commend.add(path + "ffmpeg.exe");
commend.add("-y");
commend.add("-i");
commend.add(mp3Path);
commend.add("-ac");
commend.add("1");
commend.add("-ar");
commend.add("8000");
commend.add(target);
try {
ProcessBuilder builder = new ProcessBuilder();
builder.command(commend);
Process p = builder.start();
p.waitFor();
} catch (Exception e) {
e.printStackTrace();
}
} catch (Exception e) {
System.out.println("mp3转amr异常...");
e.printStackTrace();
}
}
已知问题
即使修改消息类型后语音可以正常发送,仍存在一个显示问题:
- 实际28秒的语音在群聊中只显示为2秒
- 该问题属于显示bug,不影响实际语音内容的完整性
总结
通过本案例可以看出,在使用API时准确理解各个字段的含义至关重要。对于LiteLoaderQQNT-OneBotApi的语音消息发送功能,开发者需要注意:
- 使用正确的消息类型"voice"而非"record"
- 确保音频文件格式符合要求
- 了解并接受当前存在的显示时间不准确的问题
希望本文能帮助开发者更好地使用LiteLoaderQQNT-OneBotApi的语音消息功能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882