PCDet项目中训练过程中验证集损失的计算与可视化方法
2025-06-10 10:21:08作者:瞿蔚英Wynne
背景介绍
在深度学习模型训练过程中,观察验证集损失对于评估模型性能和防止过拟合至关重要。PCDet作为点云目标检测框架,默认情况下仅显示训练损失和学习率曲线,缺乏验证集损失的实时观察功能。本文将详细介绍如何在PCDet项目中实现验证集损失的计算与TensorBoard可视化。
验证集损失计算原理
在PCDet框架中,验证集损失计算面临两个主要挑战:
-
目标生成仅在训练模式下进行:默认情况下,AnchorHeadSingle等密集头模块只在训练模式下生成目标,验证模式下会跳过这一步骤。
-
损失计算未被集成到评估流程中:标准评估流程主要关注检测指标(如mAP),不直接返回损失值。
实现方案
修改目标生成逻辑
首先需要确保在验证阶段也能生成目标。对于AnchorHeadSingle等密集头模块,需要修改条件判断逻辑,使其在验证模式下也能生成目标。这可以通过修改模型代码实现:
# 修改前
if self.training:
target_dict = self.assign_targets(...)
# 修改后
target_dict = self.assign_targets(...)
验证集损失计算函数
实现一个独立的验证集损失计算函数,该函数应包含以下关键步骤:
- 保存模型当前训练状态
- 设置模型为评估模式(但仍需保持目标生成)
- 遍历验证集数据加载器
- 计算并累积损失
- 恢复模型原始状态
def compute_val_loss(model, val_loader, logger):
training_status = model.training
model.train() # 保持目标生成
total_val_loss = 0
num_batches = 0
with torch.no_grad():
for batch_dict in val_loader:
load_data_to_gpu(batch_dict)
model(batch_dict)
loss, tb_dict, disp_dict = model.get_training_loss()
total_val_loss += loss.item()
num_batches += 1
avg_val_loss = total_val_loss / max(num_batches, 1)
logger.info(f'验证集损失 = {avg_val_loss:.6f}')
if training_status:
model.train()
return avg_val_loss
TensorBoard可视化集成
将验证集损失集成到TensorBoard需要以下步骤:
- 在训练循环中定期调用验证集损失计算函数
- 将结果写入TensorBoard日志
- 调整x轴为epoch而非batch
# 在train_one_epoch函数中添加
if cur_epoch % val_interval == 0:
val_loss = compute_val_loss(model, val_loader, logger)
writer.add_scalar('val_loss', val_loss, cur_epoch)
注意事项
-
性能考虑:验证集损失计算会增加训练时间,建议根据验证集大小设置合适的计算频率。
-
模式切换:虽然需要计算损失,但仍应保持评估模式的其他特性(如关闭Dropout等)。
-
损失一致性:确保验证集损失与训练集损失计算方法一致,才能进行有效对比。
替代方案分析
除了直接计算验证集损失外,还可以考虑以下观察方式:
- 使用评估指标(如mAP)作为模型性能的主要观察指标
- 实现自定义的验证指标(如GIoU-3D)来观察位置精度
- 结合多种指标进行综合评估
总结
在PCDet项目中实现验证集损失观察需要理解框架内部的目标生成和损失计算机制。通过适当修改模型代码和训练流程,可以有效地将验证集损失集成到训练观察系统中。这种方法不仅有助于及时发现过拟合现象,还能为超参数调优提供重要参考。
对于点云目标检测任务,建议同时观察验证集损失和标准评估指标,以获得对模型性能的全面了解。在实际应用中,可以根据具体需求调整验证频率和观察指标的组合方式。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219