GAN-Control 项目启动与配置教程
2025-04-27 10:58:13作者:宗隆裙
1. 项目目录结构及介绍
GAN-Control 项目目录结构如下所示:
gan-control/
├── bench/
│ ├── __init__.py
│ ├── dataset.py
│ ├── model.py
│ └── train.py
├── data/
│ └── dataset_name/
│ ├── images/
│ └── ...
├── experiments/
│ └── experiment_name/
│ ├── ...
├── external/
│ └── ...
├── notebooks/
│ └── ...
├── scripts/
│ └── ...
├── src/
│ ├── __init__.py
│ ├── data_loader.py
│ ├── generator.py
│ ├── discriminator.py
│ └── ...
├── tests/
│ └── ...
├── utils/
│ └── ...
├── .gitignore
├── README.md
└── requirements.txt
bench/:包含执行实验的主要代码,如数据集加载、模型定义和训练脚本。data/:存储项目所需的数据集,通常按数据集名称组织文件夹。experiments/:存放实验结果和相关文件,通常按实验名称组织文件夹。external/:可能包含外部库或工具的副本,这些是项目依赖的。notebooks/:Jupyter 笔记本,用于数据探索和可视化。scripts/:辅助脚本,可能用于数据预处理、模型转换等。src/:源代码目录,包含项目的核心代码,如数据加载器、生成器和判别器。tests/:单元测试和集成测试代码。utils/:包含各种实用工具函数的模块。.gitignore:定义了 Git 忽略的文件和目录。README.md:项目的说明文档。requirements.txt:项目依赖的 Python 包列表。
2. 项目的启动文件介绍
GAN-Control 项目的启动通常是通过 bench/train.py 脚本进行的。以下是启动文件的基本介绍:
# train.py
import argparse
from bench.model import create_model
from bench.dataset import create_dataset
from bench.train import train_model
def main():
parser = argparse.ArgumentParser(description="Train a GAN model.")
parser.add_argument('--config', type=str, required=True, help='Path to the configuration file.')
args = parser.parse_args()
# 加载配置文件
with open(args.config, 'r') as f:
config = eval(f.read())
# 创建数据集
dataset = create_dataset(config['dataset'])
# 创建模型
model = create_model(config['model'])
# 训练模型
train_model(dataset, model, config)
if __name__ == '__main__':
main()
此脚本接收一个配置文件路径作为参数,然后读取配置文件,创建数据集和模型,最后调用训练函数开始训练。
3. 项目的配置文件介绍
配置文件通常是 JSON 或 Python 字典格式的文件,用于定义项目运行时所需的参数。以下是一个配置文件的示例:
# config.py
config = {
'dataset': {
'type': 'CustomDataset',
'params': {
'path': 'data/dataset_name/images',
'transform': 'transforms.Compose([...])'
}
},
'model': {
'type': 'GAN',
'params': {
'generator': 'models.Generator',
'discriminator': 'models.Discriminator'
}
},
'train': {
'epochs': 100,
'batch_size': 64,
'learning_rate': 0.0002
}
}
在这个配置文件中,定义了数据集的类型和参数、模型的类型和参数,以及训练过程中的参数,如迭代次数、批量大小和学习率。这些参数在启动文件中被读取并用于创建和配置数据集和模型。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178