Apache Arrow项目中pyarrow读取Parquet文件的内存消耗问题分析
问题背景
在使用Apache Arrow项目的pyarrow库处理Parquet文件时,开发者发现从pyarrow 17升级到18版本后,内存消耗出现了显著增长。具体表现为:读取一个600KB大小的Parquet文件,生成22MB大小的pyarrow表时,内存峰值消耗从200MB以下激增至1GB以上。
问题现象重现
通过简单的测试代码可以重现该问题:
import pyarrow.parquet as pq
data = pq.read_table('test.parquet')
print(data.nbytes / 1024**2) # 打印表大小(MB)
使用memray工具进行内存分析时,pyarrow 18.1.0版本显示峰值内存消耗达到1.476GB,而回退到17.0.0版本则仅消耗219.388MB。
问题本质分析
经过深入调查,发现这实际上是一个测量工具的限制问题,而非真正的内存泄漏或性能退化。关键点在于:
-
Arrow的内存池机制:Arrow默认使用自己的内存池进行内存管理,而非直接使用系统内存分配器
-
测量工具的局限性:memray这类工具默认只能跟踪系统内存分配器的调用,无法直接监控Arrow内存池的内部分配情况
-
测量误差的产生:当memray无法跟踪内存分配时,会将这些分配归类为"stack trace unavailable",导致测量结果远大于实际内存使用量
解决方案
要获得准确的内存测量结果,可以采用以下方法:
-
强制使用系统内存池:通过设置环境变量
ARROW_DEFAULT_MEMORY_POOL=system,使Arrow改用系统内存分配器 -
使用正确配置后的测量工具:在使用系统内存池后,memray等工具能够准确测量内存消耗
测试表明,在pyarrow 19.0版本中,使用系统内存池后,memray测量的内存消耗从1.8GB降至178MB,与实际的RSS内存使用量(169MB)基本一致。
技术启示
-
内存测量需谨慎:在使用性能分析工具时,需要了解其工作原理和限制条件
-
内存池的影响:现代高性能库常使用自定义内存池来优化性能,但这会给内存分析带来挑战
-
版本升级的全面评估:性能指标的显著变化需要从多个角度验证,避免被测量工具误导
最佳实践建议
对于使用pyarrow处理Parquet文件的开发者,建议:
-
在生产环境中保持默认的内存池设置以获得最佳性能
-
在进行内存分析时,临时切换到系统内存池以获取准确测量结果
-
关注RSS等系统级内存指标,而非仅依赖特定工具的测量结果
-
在升级版本时,进行全面的性能基准测试,包括内存和速度指标
通过正确理解和使用这些技术,开发者可以更准确地评估和优化基于Arrow的数据处理应用性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00