Apache Arrow项目中pyarrow读取Parquet文件的内存消耗问题分析
问题背景
在使用Apache Arrow项目的pyarrow库处理Parquet文件时,开发者发现从pyarrow 17升级到18版本后,内存消耗出现了显著增长。具体表现为:读取一个600KB大小的Parquet文件,生成22MB大小的pyarrow表时,内存峰值消耗从200MB以下激增至1GB以上。
问题现象重现
通过简单的测试代码可以重现该问题:
import pyarrow.parquet as pq
data = pq.read_table('test.parquet')
print(data.nbytes / 1024**2) # 打印表大小(MB)
使用memray工具进行内存分析时,pyarrow 18.1.0版本显示峰值内存消耗达到1.476GB,而回退到17.0.0版本则仅消耗219.388MB。
问题本质分析
经过深入调查,发现这实际上是一个测量工具的限制问题,而非真正的内存泄漏或性能退化。关键点在于:
-
Arrow的内存池机制:Arrow默认使用自己的内存池进行内存管理,而非直接使用系统内存分配器
-
测量工具的局限性:memray这类工具默认只能跟踪系统内存分配器的调用,无法直接监控Arrow内存池的内部分配情况
-
测量误差的产生:当memray无法跟踪内存分配时,会将这些分配归类为"stack trace unavailable",导致测量结果远大于实际内存使用量
解决方案
要获得准确的内存测量结果,可以采用以下方法:
-
强制使用系统内存池:通过设置环境变量
ARROW_DEFAULT_MEMORY_POOL=system
,使Arrow改用系统内存分配器 -
使用正确配置后的测量工具:在使用系统内存池后,memray等工具能够准确测量内存消耗
测试表明,在pyarrow 19.0版本中,使用系统内存池后,memray测量的内存消耗从1.8GB降至178MB,与实际的RSS内存使用量(169MB)基本一致。
技术启示
-
内存测量需谨慎:在使用性能分析工具时,需要了解其工作原理和限制条件
-
内存池的影响:现代高性能库常使用自定义内存池来优化性能,但这会给内存分析带来挑战
-
版本升级的全面评估:性能指标的显著变化需要从多个角度验证,避免被测量工具误导
最佳实践建议
对于使用pyarrow处理Parquet文件的开发者,建议:
-
在生产环境中保持默认的内存池设置以获得最佳性能
-
在进行内存分析时,临时切换到系统内存池以获取准确测量结果
-
关注RSS等系统级内存指标,而非仅依赖特定工具的测量结果
-
在升级版本时,进行全面的性能基准测试,包括内存和速度指标
通过正确理解和使用这些技术,开发者可以更准确地评估和优化基于Arrow的数据处理应用性能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









