Apache Arrow项目中pyarrow读取Parquet文件的内存消耗问题分析
问题背景
在使用Apache Arrow项目的pyarrow库处理Parquet文件时,开发者发现从pyarrow 17升级到18版本后,内存消耗出现了显著增长。具体表现为:读取一个600KB大小的Parquet文件,生成22MB大小的pyarrow表时,内存峰值消耗从200MB以下激增至1GB以上。
问题现象重现
通过简单的测试代码可以重现该问题:
import pyarrow.parquet as pq
data = pq.read_table('test.parquet')
print(data.nbytes / 1024**2) # 打印表大小(MB)
使用memray工具进行内存分析时,pyarrow 18.1.0版本显示峰值内存消耗达到1.476GB,而回退到17.0.0版本则仅消耗219.388MB。
问题本质分析
经过深入调查,发现这实际上是一个测量工具的限制问题,而非真正的内存泄漏或性能退化。关键点在于:
-
Arrow的内存池机制:Arrow默认使用自己的内存池进行内存管理,而非直接使用系统内存分配器
-
测量工具的局限性:memray这类工具默认只能跟踪系统内存分配器的调用,无法直接监控Arrow内存池的内部分配情况
-
测量误差的产生:当memray无法跟踪内存分配时,会将这些分配归类为"stack trace unavailable",导致测量结果远大于实际内存使用量
解决方案
要获得准确的内存测量结果,可以采用以下方法:
-
强制使用系统内存池:通过设置环境变量
ARROW_DEFAULT_MEMORY_POOL=system,使Arrow改用系统内存分配器 -
使用正确配置后的测量工具:在使用系统内存池后,memray等工具能够准确测量内存消耗
测试表明,在pyarrow 19.0版本中,使用系统内存池后,memray测量的内存消耗从1.8GB降至178MB,与实际的RSS内存使用量(169MB)基本一致。
技术启示
-
内存测量需谨慎:在使用性能分析工具时,需要了解其工作原理和限制条件
-
内存池的影响:现代高性能库常使用自定义内存池来优化性能,但这会给内存分析带来挑战
-
版本升级的全面评估:性能指标的显著变化需要从多个角度验证,避免被测量工具误导
最佳实践建议
对于使用pyarrow处理Parquet文件的开发者,建议:
-
在生产环境中保持默认的内存池设置以获得最佳性能
-
在进行内存分析时,临时切换到系统内存池以获取准确测量结果
-
关注RSS等系统级内存指标,而非仅依赖特定工具的测量结果
-
在升级版本时,进行全面的性能基准测试,包括内存和速度指标
通过正确理解和使用这些技术,开发者可以更准确地评估和优化基于Arrow的数据处理应用性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C063
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00