Monkey项目中Qwen-VL模型微调参数分析
2025-07-08 20:03:30作者:宣聪麟
在Monkey项目中使用Qwen-VL模型进行微调时,用户观察到一个值得注意的现象:在未启用LoRA的情况下,模型的可训练参数比例达到了约80%。这一现象引发了关于模型架构和训练策略的深入思考。
模型参数构成解析
Monkey项目中的Qwen-VL模型采用了多模态架构设计,其参数主要由以下几个关键部分组成:
- 大型语言模型(LLM)部分:作为模型的核心推理引擎,这部分通常占据模型参数的主要比例
- 视觉重采样器(Resampler):负责处理视觉特征与语言模型的对接
- 视觉编码器:处理输入图像的特征提取
高比例可训练参数的合理性
在Monkey项目的实现中,即使未启用LoRA技术,模型仍保持较高的可训练参数比例,这主要源于以下设计考虑:
- 多模态对齐需求:视觉和语言模态间的对齐需要较大规模的参数调整空间
- 模型架构特性:视觉重采样器等组件通常设计为完全可训练
- 性能优化:保持较高比例的可训练参数有助于模型更好地适应下游任务
训练策略建议
对于希望使用Monkey项目进行模型微调的研究者和开发者,建议注意以下几点:
- 计算资源评估:高比例可训练参数意味着需要更多的计算资源
- 学习率调整:可能需要更谨慎的学习率设置策略
- 正则化应用:适当增加正则化手段防止过拟合
- 监控机制:建立完善的训练监控机制,及时发现问题
技术实现细节
Monkey项目在模型设计上做出了以下技术选择:
- 端到端微调:支持对整个模型进行端到端的调整
- 模块化设计:不同功能模块具有独立的参数更新策略
- 梯度流优化:精心设计的梯度传播路径确保训练稳定性
这种设计虽然带来了较高的可训练参数比例,但同时也提供了更大的模型优化空间和性能提升潜力,是多模态模型训练中的一种合理选择。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1