Supabase-py项目中使用ilike过滤器时JSON生成错误的解决方案
在Python项目中使用Supabase客户端库supabase-py时,开发者可能会遇到一个常见问题:当尝试使用ilike方法进行模糊查询时,系统抛出"JSON could not be generated"错误。这个问题通常表现为一个500内部服务器错误,并伴随着网络服务的Worker异常提示。
问题现象
开发者尝试执行类似以下的查询代码时会出现问题:
response = supabase.table("stocks").select("*").ilike("company_name","%IDEA%").execute().data
错误信息显示服务器无法生成JSON响应,返回的是HTML格式的错误页面而非预期的JSON数据。从堆栈跟踪可以看出,客户端库在尝试解析响应为JSON时失败,最终抛出了APIError异常。
问题根源
经过分析,这个问题源于Supabase的REST API对模糊查询中通配符的处理方式。在PostgreSQL的标准SQL语法中,LIKE操作符使用百分号(%)作为通配符。然而,在通过Supabase的REST API进行查询时,直接使用%符号会导致服务器端处理异常。
解决方案
解决这个问题的正确方法是使用星号(*)替代百分号(%)作为通配符。修改后的查询示例如下:
response = supabase.table("stocks").select("*").ilike("company_name","*IDEA*").execute().data
这种修改能够使查询正常工作,因为Supabase的REST API层内部会将星号通配符转换为PostgreSQL能够理解的百分号通配符。
技术背景
Supabase-py库是Supabase官方提供的Python客户端,它封装了对Supabase REST API的调用。当使用ilike方法时,库会构建一个HTTP请求发送到Supabase服务器。服务器端的PostgREST组件负责将这些REST API调用转换为实际的PostgreSQL查询。
在标准PostgreSQL中,LIKE操作符使用:
- 百分号(%)匹配任意数量的字符(包括零个字符)
- 下划线(_)匹配单个字符
而Supabase的REST API为了提供更一致的开发者体验,在接口层做了转换处理,使用星号(*)作为通配符,这与其他一些API设计保持一致。
最佳实践
- 在supabase-py中使用
ilike方法时,始终使用星号(*)作为通配符 - 对于简单的相等比较,优先使用
eq方法而非ilike - 考虑查询性能,模糊查询通常无法有效利用索引
- 对于复杂查询,可以考虑使用Supabase的存储过程功能
总结
Supabase-py库虽然提供了方便的ORM式查询接口,但在某些操作上与原生SQL存在差异。理解这些差异并按照库的设计规范使用,可以避免类似"JSON could not be generated"这样的错误。当遇到API异常时,检查查询语法是否符合Supabase REST API的规范是首要的调试步骤。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00