Proxmark3硬嵌套攻击在AVX512系统上的问题分析与解决方案
问题背景
在使用Proxmark3对MIFARE Classic EV1卡进行硬嵌套(hardnested)攻击时,研究人员发现了一个与处理器指令集相关的有趣现象。当在支持AVX512指令集的系统上运行硬嵌套攻击时,攻击过程会在特定阶段停滞不前,无法成功恢复密钥。然而,同样的攻击在仅支持AVX2指令集的系统上却能顺利完成。
现象描述
在AVX512系统上运行硬嵌套攻击时,攻击过程会在显示"(Ignoring Sum(a8) properties)"后暂停数秒,然后失败。而在AVX2系统上,攻击能够正常进入密钥恢复阶段并成功恢复密钥。这一现象具有高度可重复性,表明可能存在底层代码问题而非随机性故障。
技术分析
通过深入调试和分析,研究人员发现问题出在hardnested_bf_core.c文件中的位片处理逻辑。在AVX512架构下,代码未能正确处理大于256位的位片情况。具体来说,当MAX_BITSLICES大于256时,代码缺少对相应位片的归零检查,导致计算结果错误。
解决方案
针对这一问题,研究人员提出了以下修复方案:
- 在hardnested_bf_core.c文件中添加对更大位片的支持
- 特别添加对AVX512指令集的优化处理
- 确保所有位片都能被正确检查和归零
修复后的代码增加了对更大位片的检查条件,确保在AVX512架构下也能正确处理所有位片数据。
验证结果
经过多位研究人员的验证,该修复方案确实解决了AVX512系统上的硬嵌套攻击问题。修复后:
- 攻击能够正常进入密钥恢复阶段
- 密钥恢复成功率与AVX2系统相当
- 性能表现符合预期
技术启示
这一案例揭示了硬件指令集优化中的潜在陷阱。在进行SIMD优化时,开发者需要考虑:
- 不同指令集架构的位宽差异
- 边界条件的全面覆盖
- 跨平台兼容性测试的重要性
对于安全研究人员而言,理解底层硬件特性对密码分析工具的影响至关重要。这类问题不仅影响工具的功能性,还可能对安全评估的准确性产生深远影响。
总结
Proxmark3作为一款强大的RFID安全研究工具,其功能实现与底层硬件架构密切相关。本次AVX512相关问题的发现和解决,不仅完善了工具的功能,也为后续的硬件优化提供了宝贵经验。研究人员在使用高性能指令集进行优化时,应当充分考虑不同硬件平台的特性差异,确保代码的全面兼容性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00