Compose Destinations 多模块导航图配置要点解析
2025-06-25 02:56:38作者:谭伦延
Compose Destinations 是一个优秀的 Jetpack Compose 导航库,它通过注解处理器简化了导航图的定义和使用。在多模块项目中配置导航图时,开发者可能会遇到一些需要注意的技术细节。
多模块导航图基础配置
在多模块项目中,通常会有一个主模块(app模块)和若干功能模块。每个功能模块可以定义自己的导航图,然后通过主模块进行整合。
主模块导航图定义:
private const val MAIN_GRAPH = "main_nav_graph"
@NavHostGraph(
defaultTransitions = DefaultTransitions::class,
route = MAIN_GRAPH,
visibility = CodeGenVisibility.INTERNAL
)
annotation class MainGraph {
@ExternalNavGraph<BottomNavigationNavGraph>(start = true)
companion object Includes
}
功能模块导航图定义:
private const val BOTTOM_NAVIGATION_GRAPH = "bottom_navigation_graph"
@NavGraph<ExternalModuleGraph>(
route = BOTTOM_NAVIGATION_GRAPH,
start = true,
navArgs = Nothing::class,
deepLinks = []
)
annotation class BottomNavigationNavGraph
关键配置注意事项
-
命名规范:功能模块的导航图注解类名必须以"NavGraph"结尾,这是Compose Destinations的命名约定。例如
BottomNavigationNavGraph是正确的,而BottomNavigationGraph会导致编译错误。 -
可见性控制:
- 主模块可以使用
CodeGenVisibility.INTERNAL限制生成的导航代码的可见性 - 功能模块的导航图不能使用
CodeGenVisibility.INTERNAL,因为这会破坏模块间的可见性规则,导致主模块无法访问功能模块的导航图
- 主模块可以使用
-
依赖关系:
- 功能模块需要先编译,主模块才能正确引用其导航图
- 确保模块间的依赖关系正确配置
最佳实践建议
-
对于多模块项目,建议采用清晰的命名规范,如使用模块名作为导航图前缀
-
在功能模块中,可以定义多个层级嵌套的导航图,但只有最外层的导航图需要暴露给其他模块
-
考虑使用KSP注解处理器而不是kapt,以获得更好的编译性能
-
对于复杂的导航结构,建议先在小规模测试项目中验证配置,再应用到主项目
通过遵循这些配置要点,开发者可以避免常见的多模块导航图集成问题,构建出结构清晰、可维护性高的导航架构。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134