GSM 的安装和配置教程
1. 项目基础介绍和主要编程语言
GSM(Gate-Shift Networks)是一个用于视频行为识别的开源项目。该项目基于论文《Gate-Shift Networks for Video Action Recognition》实现,并在 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020 上发表。GSM 利用门控移位网络来提升视频行为识别的准确度。项目的主要编程语言是 Python,同时也包含一些 C++ 代码。
2. 项目使用的关键技术和框架
GSM 使用的关键技术是门控移位网络(Gate-Shift Networks),这是一种新型的网络结构,专门设计用于处理视频序列数据,能够在不同的时间尺度上捕捉视频中的动态信息。项目使用了 PyTorch 作为深度学习框架,同时利用 TensorboardX 进行模型的可视化。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装之前,请确保您的系统中已经安装以下软件:
- Python 3.5 或更高版本
- PyTorch 深度学习库
- TensorboardX
此外,还需要准备视频数据集,例如 Something Something-v1 或 Diving48。
安装步骤
-
克隆项目仓库:
打开终端或命令提示符,使用以下命令克隆项目仓库:
git clone https://github.com/swathikirans/GSM.git cd GSM -
安装依赖:
在项目根目录下,运行以下命令安装 Python 依赖:
pip install -r requirements.txt -
准备数据集:
根据您的数据集类型,运行相应的数据预处理脚本。以下为两种数据集的处理示例:
-
对于 Something Something-v1 数据集,运行:
python data_scripts/process_dataset_something.py -
对于 Diving48 数据集,运行:
python data_scripts/extract_frames_diving48.py python data_scripts/process_dataset_diving.py
-
-
训练模型:
使用以下命令开始训练模型(以下命令为训练 Something Something-v1 数据集的示例):
python main.py something-v1 RGB --arch BNInception \ --num_segments 8 --consensus_type avg \ --batch-size 16 --iter_size 2 --dropout 0.5 \ --lr 0.01 --warmup 10 --epochs 60 --eval-freq 5 \ --gd 20 --run_iter 1 -j 16 --npb --gsm其中包含了许多训练参数,您可以根据自己的需要调整这些参数。
-
测试模型:
训练完成后,您可以使用以下命令测试模型:
python test_models.py something-v1 RGB models/something-v1_RGB_InceptionV3_avg_segment16_checkpoint.pth.tar \ --arch InceptionV3 --crop_fusion_type avg \ --test_segments 16 --test_crops 1 --num_clips 1 --gsm同样,您可以根据需要调整测试参数。
通过以上步骤,您应该能够成功安装和配置 GSM 项目,并进行视频行为识别的训练和测试。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00