GSM 的安装和配置教程
1. 项目基础介绍和主要编程语言
GSM(Gate-Shift Networks)是一个用于视频行为识别的开源项目。该项目基于论文《Gate-Shift Networks for Video Action Recognition》实现,并在 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020 上发表。GSM 利用门控移位网络来提升视频行为识别的准确度。项目的主要编程语言是 Python,同时也包含一些 C++ 代码。
2. 项目使用的关键技术和框架
GSM 使用的关键技术是门控移位网络(Gate-Shift Networks),这是一种新型的网络结构,专门设计用于处理视频序列数据,能够在不同的时间尺度上捕捉视频中的动态信息。项目使用了 PyTorch 作为深度学习框架,同时利用 TensorboardX 进行模型的可视化。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装之前,请确保您的系统中已经安装以下软件:
- Python 3.5 或更高版本
- PyTorch 深度学习库
- TensorboardX
此外,还需要准备视频数据集,例如 Something Something-v1 或 Diving48。
安装步骤
-
克隆项目仓库:
打开终端或命令提示符,使用以下命令克隆项目仓库:
git clone https://github.com/swathikirans/GSM.git cd GSM -
安装依赖:
在项目根目录下,运行以下命令安装 Python 依赖:
pip install -r requirements.txt -
准备数据集:
根据您的数据集类型,运行相应的数据预处理脚本。以下为两种数据集的处理示例:
-
对于 Something Something-v1 数据集,运行:
python data_scripts/process_dataset_something.py -
对于 Diving48 数据集,运行:
python data_scripts/extract_frames_diving48.py python data_scripts/process_dataset_diving.py
-
-
训练模型:
使用以下命令开始训练模型(以下命令为训练 Something Something-v1 数据集的示例):
python main.py something-v1 RGB --arch BNInception \ --num_segments 8 --consensus_type avg \ --batch-size 16 --iter_size 2 --dropout 0.5 \ --lr 0.01 --warmup 10 --epochs 60 --eval-freq 5 \ --gd 20 --run_iter 1 -j 16 --npb --gsm其中包含了许多训练参数,您可以根据自己的需要调整这些参数。
-
测试模型:
训练完成后,您可以使用以下命令测试模型:
python test_models.py something-v1 RGB models/something-v1_RGB_InceptionV3_avg_segment16_checkpoint.pth.tar \ --arch InceptionV3 --crop_fusion_type avg \ --test_segments 16 --test_crops 1 --num_clips 1 --gsm同样,您可以根据需要调整测试参数。
通过以上步骤,您应该能够成功安装和配置 GSM 项目,并进行视频行为识别的训练和测试。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00