NEARCore项目中的线程池优化实践
2025-07-01 02:34:12作者:龚格成
背景与问题分析
在NEARCore区块链项目中,任务调度系统最初采用了Rayon线程池来处理所有并行任务。这种设计在实践中暴露出了一个关键问题:当多个计算密集型任务同时运行时,Rayon的调度机制可能导致大任务抢占资源,进而影响其他并行任务的执行效率。
具体表现为:当一个大型任务使用Rayon并行处理集合数据时,可能会抢占另一个正在执行的大型任务所需的线程资源。这种资源竞争不仅降低了整体吞吐量,还可能影响关键任务的延迟表现,最终导致区块生产、分片处理等核心功能的性能下降。
解决方案设计
经过技术团队的深入分析,决定采用操作系统原生线程来构建专门的线程池,用于处理长时间运行的计算任务。这种方案具有以下优势:
- 避免调度干扰:完全规避Rayon内部可能存在的任务抢占问题
- 精细控制:可以实现自定义的线程管理策略
- 动态扩展:能够根据负载情况自动调整线程数量
核心设计思路是构建一个全局静态线程池,提供统一的任务提交接口。线程池实现包含以下关键组件:
- 线程管理:维护空闲线程列表,按需创建新线程
- 动态扩容:当无空闲线程时立即创建新线程
- 自动回收:线程空闲超过阈值(如30秒)后自动退出
- 任务分发:使用条件变量实现高效的任务通知机制
技术实现细节
线程池的核心实现采用了标准库中的同步原语:
static POOL: OnceCell<ThreadPool> = OnceCell::new();
fn spawn(f: impl FnOnce() + Send) {
let thread = POOL.take_thread();
thread.run(|f| {
f();
POOL.return_thread(thread);
});
}
线程主体逻辑采用条件变量实现任务等待和超时退出:
let task_guard = mutex.lock();
loop {
let Ok(work) = condvar.wait_timeout_ms(task_guard, 30000) else { break };
let work = Option::take(&mut *work);
work();
POOL.reintroduce_self_into_pool();
}
POOL.remove_self();
性能考量与权衡
在方案讨论过程中,团队对几种不同设计进行了深入探讨:
- 固定大小线程池:避免上下文切换开销但可能限制吞吐量
- 动态线程池:可能增加上下文切换但改善延迟表现
- 多Rayon池方案:尝试过但效果有限
最终选择了动态线程池方案,主要基于以下考虑:
- 延迟敏感:区块链系统对任务完成时间的确定性要求高
- 长尾优化:避免任务排队导致的关键路径延迟
- 资源效率:现代操作系统对线程调度已有很好优化
实施效果
通过引入专用线程池,项目获得了以下改进:
- 关键路径任务的执行时间更加稳定
- 计算密集型任务不再相互干扰
- 系统整体吞吐量得到提升
- 资源利用率更加合理
这种线程池设计方案不仅解决了当前的问题,还为未来可能的优化(如任务优先级调度、I/O密集型任务处理等)提供了良好的扩展基础。
总结
NEARCore项目通过重构线程池架构,实现了计算任务的高效调度和执行。这一优化实践展示了在区块链这种高并发、低延迟要求的场景下,合理设计线程模型的重要性。技术团队在方案选择上充分考虑了性能指标、实现复杂度和未来扩展性,最终取得了良好的优化效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
662