NVIDIA GPU Operator中实现节点级MIG策略配置的技术解析
2025-07-04 22:35:09作者:袁立春Spencer
背景介绍
在现代GPU集群管理中,NVIDIA的多实例GPU(MIG)技术允许将单个物理GPU划分为多个独立运行的GPU实例。NVIDIA GPU Operator作为Kubernetes环境中管理GPU资源的工具,默认支持在集群范围内统一配置MIG策略(single或mixed模式)。但在实际生产环境中,我们可能需要为不同节点配置不同的MIG策略。
需求分析
某些场景下,集群中的部分节点需要运行需要完整GPU资源的应用(适合single模式),而其他节点则需要运行多个轻量级工作负载(适合mixed模式)。传统方式下,GPU Operator只能为整个集群配置单一MIG策略,无法满足这种差异化需求。
技术实现方案
核心思路
通过GPU Operator的ConfigMap功能,我们可以为不同节点配置不同的MIG策略。这主要利用了设备插件的标签选择机制,允许基于节点标签动态应用不同的配置。
详细实施步骤
- 创建配置映射(ConfigMap) 首先需要创建一个包含不同MIG策略配置的ConfigMap资源:
apiVersion: v1
kind: ConfigMap
metadata:
name: migstrategy-config
data:
mixed: |-
version: v1
flags:
migStrategy: mixed
single: |-
version: v1
flags:
migStrategy: single
- 应用配置到GPU Operator 将创建的ConfigMap关联到GPU Operator的ClusterPolicy资源:
kubectl patch clusterpolicies.nvidia.com/cluster-policy \
-n gpu-operator --type merge \
-p '{"spec": {"devicePlugin": {"config": {"name": "migstrategy-config"}}}}'
- 节点级策略配置 通过为不同节点打上特定标签来应用不同的MIG策略:
# 为节点配置single模式
kubectl label node <node-name> nvidia.com/device-plugin.config=single
# 为节点配置mixed模式
kubectl label node <node-name> nvidia.com/device-plugin.config=mixed
实现原理
当GPU Operator的设备插件检测到节点标签变更时,会根据标签值从ConfigMap中加载对应的配置。设备插件随后会根据配置中的migStrategy参数,调用NVIDIA驱动接口设置相应的MIG模式。整个过程无需重启节点,只需相关Pod重新加载配置即可生效。
注意事项
- 修改配置后,GPU Operator的相关组件(如gpu-feature-discovery和nvidia-device-plugin-daemonset)会自动重启以加载新配置
- 确保ConfigMap中定义的配置名称与节点标签值完全匹配
- 在变更MIG策略前,建议先排空节点上的工作负载,避免影响运行中的应用程序
总结
通过GPU Operator的灵活配置机制,我们可以轻松实现节点级的MIG策略管理。这种细粒度的控制方式为混合工作负载场景提供了更好的资源利用率,同时也保持了配置的集中管理和一致性。这种方案不仅适用于MIG策略配置,也可以扩展到其他需要节点级差异化配置的场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178