Sidekiq Pro Web UI 配置 Redis 连接池的解决方案
在使用 Sidekiq Pro 的 Web 界面时,配置多个 Redis 连接池可能会遇到一些兼容性问题。本文将详细介绍这些问题的成因以及解决方案。
问题背景
当开发者尝试为 Sidekiq Pro 的 Web UI 配置多个 Redis 连接池时,可能会遇到两种不同类型的错误:
-
Redis gem 兼容性问题:当使用传统的 Redis gem 时,会出现
NoMethodError: private method 'select' called错误。这是因为 Sidekiq 7 版本已经不再支持 Redis gem,而是全面转向了 redis-client。 -
Redis-client 方法缺失问题:当切换到 redis-client 后,又会出现
NoMethodError: undefined method 'mget'错误。这是因为直接使用 redis-client 的连接池时,缺少必要的适配层。
根本原因分析
Sidekiq 7 版本进行了重大的底层重构,完全移除了对 Redis gem 的依赖,转而使用 redis-client 作为默认的 Redis 客户端。这一变化带来了性能提升和更现代的架构,但也导致了与旧配置方式的兼容性问题。
解决方案
正确的配置方式是使用 Sidekiq 提供的 RedisClientAdapter 适配器。以下是完整的配置示例:
require "rack"
require "sidekiq-pro"
require "sidekiq/pro/web"
require "securerandom"
require "rack/urlmap"
require "rack/session"
require "redis-client"
require "sidekiq/redis_client_adapter"
# 创建 Redis 连接池
POOL1 = Sidekiq::RedisClientAdapter.new(
RedisClient.config(url: "redis://localhost:6379/0").new_pool
)
POOL2 = Sidekiq::RedisClientAdapter.new(
RedisClient.config(url: "redis://localhost:6379/1").new_pool
)
# 配置 Rack 应用
use Rack::Session::Cookie,
secret: SecureRandom.hex(32),
same_site: true,
max_age: 86_400
run Rack::URLMap.new(
"/sidekiq1" => Sidekiq::Pro::Web.with(redis_pool: POOL1),
"/sidekiq2" => Sidekiq::Pro::Web.with(redis_pool: POOL2),
)
关键点说明
-
RedisClientAdapter:这是 Sidekiq 提供的适配器层,它将 redis-client 的连接池转换为 Sidekiq 内部可以识别的格式,解决了方法缺失的问题。
-
连接池创建:使用 RedisClient.config 创建配置对象,然后调用 new_pool 方法创建连接池,最后用 RedisClientAdapter 进行包装。
-
Web UI 配置:使用 Sidekiq::Pro::Web.with 方法为每个 Web UI 实例分配独立的 Redis 连接池。
最佳实践
-
对于生产环境,建议为每个 Sidekiq Web UI 实例配置独立的 Redis 数据库(通过不同的 DB 编号)。
-
连接池大小应根据实际并发需求进行调整,通常 5-10 个连接足够应对大多数场景。
-
确保使用最新版本的 Sidekiq 和 redis-client gem 以获得最佳兼容性和性能。
通过以上配置,开发者可以顺利地为多个 Sidekiq Web UI 实例配置独立的 Redis 连接池,实现多租户或分片部署的需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00