Ash框架中relates_to_actor_via导致的SQL性能问题分析
2025-07-08 13:16:52作者:江焘钦
在Ash框架使用过程中,开发者发现了一个与权限策略相关的SQL查询性能问题。当使用relates_to_actor_via
条件结合is_nil
检查时,框架生成的SQL查询会包含一个昂贵的LEFT OUTER JOIN操作,这导致查询性能显著下降。
问题现象
在权限策略中同时使用relates_to_actor_via
和is_nil
条件时,例如:
policy action_type([:read]) do
authorize_if relates_to_actor_via([:user])
authorize_if expr(is_nil(user_id))
end
Ash框架会生成如下SQL查询:
SELECT v0."id", v0."slug", v0."name"
FROM "resource" AS v0
LEFT OUTER JOIN "public"."users" AS u1 ON v0."user_id" = u1."id"
WHERE (
(u1."id"::uuid = '<uuid>'::uuid)
OR (v0."user_id"::uuid IS NULL)
);
这个查询由于使用了LEFT OUTER JOIN,执行效率较低。相比之下,直接检查user_id
字段的查询性能要高30倍:
SELECT v0."id", v0."slug", v0."name"
FROM "resource" AS v0
WHERE ((v0."user_id"::uuid IS NULL) OR (v0."user_id"::uuid = '<uuid>'))
技术原理
问题的根源在于Ash框架处理relates_to_actor_via
条件的方式。当使用这个宏时,框架需要确定资源是否与当前执行者(actor)相关联。默认情况下,它会通过JOIN关联表来验证这种关系。
当这个条件与is_nil
检查组合使用时,由于使用了OR逻辑,框架必须确保即使关联表中没有匹配记录(即LEFT JOIN结果为NULL)时,查询仍能返回结果。这就强制使用了LEFT OUTER JOIN而不是更高效的直接字段比较。
解决方案
目前框架维护者建议的解决方案是避免使用relates_to_actor_via
宏,而是直接比较user_id
字段:
policy action_type([:read]) do
authorize_if expr(user_id == ^actor(:id))
authorize_if expr(is_nil(user_id))
end
这种写法会生成更高效的SQL查询,因为它可以直接比较字段值而不需要表连接。
未来优化方向
框架维护者指出,未来可能会优化这种情况,自动将类似"foo.id"的引用替换为"foo_id"的直接比较,前提是当前资源通过非过滤关系属于该关联对象。这种优化可以保留relates_to_actor_via
的语义同时提高查询性能。
最佳实践建议
在编写Ash权限策略时,开发者应当:
- 对于简单的关联检查,优先考虑直接比较外键字段而非使用
relates_to_actor_via
- 注意OR条件组合可能导致的查询计划变化
- 在性能关键路径上,手动检查生成的SQL查询
- 对于复杂权限逻辑,考虑使用更基础的表达式而非高级宏
通过理解这些底层机制,开发者可以更好地平衡代码简洁性和查询性能。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133