在Crawl4AI项目中使用开源LLM进行数据提取的实践指南
2025-05-03 23:03:34作者:余洋婵Anita
概述
在当今数据驱动的时代,从网页中高效提取结构化信息变得越来越重要。Crawl4AI作为一个强大的网页爬取工具,提供了多种内容提取策略,其中LLMExtractionStrategy允许开发者利用大型语言模型(LLM)进行智能内容提取。本文将重点介绍如何在Crawl4AI项目中正确配置和使用开源LLM模型进行数据提取。
开源LLM集成方案
与商业API不同,开源LLM的集成需要更多技术细节考虑。以下是两种推荐的集成方式:
- HuggingFace模型直接调用:适合熟悉HuggingFace生态的开发者
- 通过Ollama服务调用:提供更简单的本地模型管理方式
关键配置要点
在使用开源LLM进行内容提取时,有几个关键配置需要特别注意:
- provider参数格式:必须采用"平台/模型路径"的完整格式,如"huggingface/meta-llama/Meta-Llama-3.1-8B"
- API令牌传递:需要正确设置HuggingFace的API令牌
- 模型下载:建议预先下载模型以获得更好的性能
实践代码示例
以下是一个完整的使用HuggingFace开源LLM进行数据提取的示例代码:
import asyncio
import nest_asyncio
from crawl4ai import AsyncWebCrawler
from crawl4ai.extraction_strategy import LLMExtractionStrategy
from pydantic import BaseModel, Field
import os
nest_asyncio.apply()
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="OpenAI模型名称")
input_fee: str = Field(..., description="OpenAI模型的输入token费用")
output_fee: str = Field(..., description="OpenAI模型的输出token费用")
async def extract_openai_fees():
async with AsyncWebCrawler(verbose=True) as crawler:
result = await crawler.arun(
url='https://openai.com/api/pricing',
word_count_threshold=1,
extraction_strategy=LLMExtractionStrategy(
provider="huggingface/meta-llama/Meta-Llama-3.1-8B",
api_token=os.environ["HUGGINGFACE_API_TOKEN"],
schema=OpenAIModelFee.schema(),
extraction_type="schema",
instruction="""从爬取内容中提取所有提到的模型名称及其输入和输出token费用。
不要遗漏内容中的任何模型。提取的模型JSON格式应如下所示:
{"model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens"}""",
),
bypass_cache=True,
)
print(result.extracted_content)
常见问题解决
- 索引越界错误:通常是由于provider参数格式不正确导致的,确保使用完整路径格式
- 性能问题:对于较大的开源模型,建议在本地或专用服务器上部署
- 提取质量:可以通过调整temperature参数和优化instruction提示词来提高提取准确性
最佳实践建议
- 对于生产环境,建议使用Ollama服务管理本地模型
- 复杂的提取任务可以拆分为多个简单步骤
- 充分利用Pydantic模型的数据验证功能确保提取质量
- 对于频繁访问的页面,合理设置缓存策略
通过遵循这些指南,开发者可以充分利用Crawl4AI与开源LLM的结合优势,构建高效可靠的网页数据提取解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135