在Crawl4AI项目中使用开源LLM进行数据提取的实践指南
2025-05-03 12:32:51作者:余洋婵Anita
概述
在当今数据驱动的时代,从网页中高效提取结构化信息变得越来越重要。Crawl4AI作为一个强大的网页爬取工具,提供了多种内容提取策略,其中LLMExtractionStrategy允许开发者利用大型语言模型(LLM)进行智能内容提取。本文将重点介绍如何在Crawl4AI项目中正确配置和使用开源LLM模型进行数据提取。
开源LLM集成方案
与商业API不同,开源LLM的集成需要更多技术细节考虑。以下是两种推荐的集成方式:
- HuggingFace模型直接调用:适合熟悉HuggingFace生态的开发者
- 通过Ollama服务调用:提供更简单的本地模型管理方式
关键配置要点
在使用开源LLM进行内容提取时,有几个关键配置需要特别注意:
- provider参数格式:必须采用"平台/模型路径"的完整格式,如"huggingface/meta-llama/Meta-Llama-3.1-8B"
- API令牌传递:需要正确设置HuggingFace的API令牌
- 模型下载:建议预先下载模型以获得更好的性能
实践代码示例
以下是一个完整的使用HuggingFace开源LLM进行数据提取的示例代码:
import asyncio
import nest_asyncio
from crawl4ai import AsyncWebCrawler
from crawl4ai.extraction_strategy import LLMExtractionStrategy
from pydantic import BaseModel, Field
import os
nest_asyncio.apply()
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="OpenAI模型名称")
input_fee: str = Field(..., description="OpenAI模型的输入token费用")
output_fee: str = Field(..., description="OpenAI模型的输出token费用")
async def extract_openai_fees():
async with AsyncWebCrawler(verbose=True) as crawler:
result = await crawler.arun(
url='https://openai.com/api/pricing',
word_count_threshold=1,
extraction_strategy=LLMExtractionStrategy(
provider="huggingface/meta-llama/Meta-Llama-3.1-8B",
api_token=os.environ["HUGGINGFACE_API_TOKEN"],
schema=OpenAIModelFee.schema(),
extraction_type="schema",
instruction="""从爬取内容中提取所有提到的模型名称及其输入和输出token费用。
不要遗漏内容中的任何模型。提取的模型JSON格式应如下所示:
{"model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens"}""",
),
bypass_cache=True,
)
print(result.extracted_content)
常见问题解决
- 索引越界错误:通常是由于provider参数格式不正确导致的,确保使用完整路径格式
- 性能问题:对于较大的开源模型,建议在本地或专用服务器上部署
- 提取质量:可以通过调整temperature参数和优化instruction提示词来提高提取准确性
最佳实践建议
- 对于生产环境,建议使用Ollama服务管理本地模型
- 复杂的提取任务可以拆分为多个简单步骤
- 充分利用Pydantic模型的数据验证功能确保提取质量
- 对于频繁访问的页面,合理设置缓存策略
通过遵循这些指南,开发者可以充分利用Crawl4AI与开源LLM的结合优势,构建高效可靠的网页数据提取解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869