VAR项目中的渐进式训练机制解析
2025-05-29 23:59:37作者:魏侃纯Zoe
渐进式训练(Progressive Training)是深度学习领域中一种有效的训练策略,特别是在计算资源有限的情况下。本文将以FoundationVision的VAR项目为例,深入解析其渐进式训练的实现机制和配置方法。
渐进式训练的基本原理
渐进式训练的核心思想是在训练初期使用较低分辨率或较简单的模型结构进行训练,随着训练过程的推进,逐步增加模型复杂度或输入分辨率。这种方法主要有两个优势:
- 加速训练初期收敛:低分辨率下模型可以更快地完成前向和反向传播
- 节省计算资源:训练初期不需要处理高分辨率数据,减少显存占用
VAR项目中的渐进式训练实现
VAR项目通过三个关键参数控制渐进式训练:
- pg:渐进式训练阶段占总训练周期的比例
- pg0:初始训练分辨率相对于最终分辨率的比例
- pgwp:每个渐进阶段的热身周期数
在VAR的代码实现中,渐进式训练的状态通过prog_si属性来维护,该属性在train_step方法中被动态更新,反映了当前训练所处的渐进阶段。
典型配置示例
对于512x512分辨率图像上的d36-s模型训练,推荐使用以下配置:
--pg=0.7 --pg0=4
这表示:
- 前70%的训练周期使用渐进式训练
- 后30%的训练周期使用全分辨率训练
- 初始分辨率为最终分辨率的1/4
热身周期数pgwp通常会自动设置为总训练周期的1/300,确保每个渐进阶段有足够的时间适应新的分辨率。
实现细节分析
VAR的渐进式训练实现有几个技术要点值得关注:
- 动态分辨率调整:训练过程中会根据当前阶段自动调整输入分辨率
- 平滑过渡:通过热身周期确保分辨率变化不会导致训练不稳定
- 灵活配置:参数设计允许在不同阶段采用不同的训练策略
适用场景建议
渐进式训练特别适用于以下场景:
- 计算资源有限的环境
- 高分辨率图像训练任务
- 大型模型训练初期
对于标准配置或资源充足的情况,可以保持渐进式训练参数为默认值(即关闭该功能),直接进行全分辨率训练。
总结
VAR项目中的渐进式训练实现提供了一种灵活高效的训练策略,通过合理配置可以显著提升训练效率。开发者可以根据实际硬件条件和任务需求,调整渐进式训练参数,在训练速度和模型性能之间取得最佳平衡。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210