Kong Gateway 3.7.0 安装中的数据库迁移问题解析
问题背景
在使用Kubernetes部署Kong Gateway 3.7.0版本时,用户遇到了一个常见的初始化问题。控制平面Pod始终处于Init状态,日志显示需要执行"kong migrations up"命令。这是一个典型的数据库迁移问题,在Kong Gateway的部署过程中经常出现。
问题现象
部署后,Kong控制平面Pod的状态显示为Init:1/2,表明初始化容器未能成功完成。查看wait-for-db容器的日志,可以看到以下关键错误信息:
Error: /usr/local/share/lua/5.1/kong/cmd/utils/migrations.lua:20: New migrations available; run 'kong migrations up' to proceed
这表明Kong检测到数据库中存在待执行的迁移脚本,但尚未执行这些迁移。
根本原因
Kong Gateway使用数据库迁移机制来管理其数据库架构的变更。当部署新版本时,Kong会检查数据库中的schema_migrations表,确认是否所有迁移都已执行。如果发现有未执行的迁移脚本,就会阻止服务启动,直到迁移完成。
在Kubernetes环境中,虽然Helm chart包含了初始化迁移的Job(kong-cp-kong-init-migrations),但有时由于时序问题或配置不当,这个Job可能未能正确完成迁移任务。
解决方案
方法一:手动执行迁移命令
-
首先确认PostgreSQL Pod已正常运行:
kubectl get pods -n kong -
进入Kong Pod执行迁移:
kubectl exec -it <kong-pod-name> -n kong -- kong migrations up -
验证迁移状态:
kubectl exec -it <kong-pod-name> -n kong -- kong migrations status
方法二:检查并修复初始化Job
-
查看初始化Job的日志:
kubectl logs <init-migrations-pod-name> -n kong -
如果发现Job失败,可以删除并让Kubernetes重新创建:
kubectl delete job -n kong kong-cp-kong-init-migrations -
检查Job的配置是否正确,特别是环境变量是否与主应用一致。
最佳实践建议
-
版本一致性:确保命令行工具和容器内Kong版本完全一致,避免因版本差异导致的迁移问题。
-
数据库连接检查:验证Kong能否正确连接到PostgreSQL实例,检查网络策略和连接字符串。
-
初始化超时设置:在values.yaml中适当增加init容器的超时时间,特别是在资源受限的环境中。
-
迁移状态监控:部署后立即检查迁移状态,确保所有迁移成功完成。
-
生产环境考虑:对于生产环境,建议先在一个非生产环境中测试迁移,确认无误后再应用到生产环境。
深入理解
Kong的迁移系统基于Lua脚本实现,每个版本可能包含多个迁移脚本。这些脚本负责创建表、修改列、添加索引等数据库变更操作。迁移系统会记录已执行的脚本,确保每个脚本只执行一次。
在混合模式部署中,控制平面和数据平面的迁移需求可能不同,需要特别注意版本兼容性。如果迁移未能正确执行,不仅会影响服务启动,还可能导致数据不一致或功能异常。
通过理解这些底层机制,运维人员可以更有效地排查和解决Kong部署过程中的迁移问题,确保服务平稳运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00