Qiskit SDK中RY门小角度参数在Transpiler中的错误转换问题分析
问题背景
在量子计算领域,Qiskit作为IBM开发的开源量子计算框架,其Transpiler模块负责将量子电路转换为适合特定量子硬件执行的格式。近期在Qiskit 1.3.0版本中发现了一个重要问题:当电路中含有极小角度参数的RY旋转门时,Transpiler在优化级别2和3下会产生错误的电路转换结果。
问题现象
具体表现为,当RY门的旋转角度非常小(如1e-6弧度)时,经过Transpiler优化后的电路与原始电路在数学上不等价。例如以下简单电路:
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
qc.ry(1e-6, 1)
qc.cx(0, 1)
在Qiskit 1.2.4版本中,Transpiler会保持电路结构不变,而在1.3.0版本中会错误地简化为仅包含H门和RY门的电路,导致最终量子态不一致。
技术分析
根本原因
该问题的核心在于Qiskit内部不同模块对极小数值的容差处理不一致:
- CommutationAnalysis/Checker:负责分析量子门之间的交换关系
- UnitarySynthesis:处理酉矩阵合成
- RemoveIdentityEquivalent:移除等效于恒等操作的门
- Operator.equiv:判断操作符等价性
这些模块对"什么情况下可以认为一个旋转门等效于恒等操作"的判断标准不一致。特别是CommutationChecker在处理极小角度的RY门时,错误地认为它可以与CX门交换位置,从而导致不合理的电路简化。
影响范围
该问题不仅影响基本的RY门,还会影响更复杂的操作如PauliEvolutionGate。当演化时间参数很小时,同样会出现错误的Transpilation结果。
解决方案与临时应对措施
虽然官方正在修复此问题,但目前用户可以采取以下临时解决方案:
-
参数化电路:使用参数化RY门而非固定值
from qiskit.circuit import Parameter theta = Parameter('θ') qc.ry(theta, 1) # 先Transpile再绑定参数值
-
调整等价性判断容差:在比较电路时增加容差
Operator(qc).equiv(tqc, atol=1e-8)
-
降低优化级别:在问题修复前使用optimization_level=1
技术建议
对于量子算法开发者,在处理极小参数时应注意:
- 明确算法对小参数的敏感性
- 在关键位置添加电路等价性验证
- 考虑使用符号计算保持精度
- 对含小参数的电路进行专项测试
总结
该问题揭示了量子电路编译过程中数值精度处理的重要性。随着量子算法越来越复杂,对Transpiler的数值稳定性要求也越来越高。开发者应当关注此类边界条件问题,特别是在处理含小参数的量子电路时。Qiskit团队正在努力统一内部各模块的数值处理标准,预计在后续版本中彻底解决这一问题。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









