Py3plex 开源项目教程
2024-09-15 21:10:33作者:薛曦旖Francesca
1. 项目介绍
1.1 项目概述
Py3plex 是一个用于分析和可视化异构网络的 Python 库。异构网络是具有附加信息分配给节点或边(或两者)的复杂网络。该库包含了一些最先进的算法,用于网络的分解、可视化和分析。
1.2 主要功能
- 多层网络支持:提供多层(和多重)复杂网络的基本操作。
- 统计分析:提供对这些网络的统计分析的核心算法。
- 网络分解算法:提供广泛的网络分解算法集合。
- 高效的算法实现:提供高效的算法实现的 Python 包装器。
1.3 项目目标
Py3plex 的目标是:
- 提供多层(和多重)复杂网络的基本操作。
- 提供对这些网络的统计分析的核心算法。
- 提供广泛的网络分解算法集合。
- 提供高效的算法实现的 Python 包装器。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3。然后,你可以通过以下命令安装 Py3plex:
pip install py3plex
2.2 快速启动示例
以下是一个简单的示例,展示如何加载一个多层网络并进行基本操作:
from py3plex.core import multinet
# 加载多层网络
multilayer_network = multinet.multi_layer_network()
multilayer_network.load_network("datasets/test.edgelist", directed=False, input_type="edgelist")
# 打印节点和边
print("Nodes:", list(multilayer_network.get_nodes()))
print("Edges:", list(multilayer_network.get_edges()))
3. 应用案例和最佳实践
3.1 应用案例
3.1.1 多层网络分析
Py3plex 可以用于分析多层网络,例如社交网络、生物网络等。以下是一个示例,展示如何加载一个多层网络并进行分析:
from py3plex.core import multinet
from py3plex.algorithms.statistics import basic_statistics
# 加载多层网络
multilayer_network = multinet.multi_layer_network()
multilayer_network.load_network("datasets/imdb.gml", directed=True, input_type="gml")
# 进行基本统计分析
stats_frame = basic_statistics(multilayer_network.core_network)
print(stats_frame)
3.1.2 网络可视化
Py3plex 提供了多种网络可视化方法,以下是一个示例,展示如何可视化一个多层网络:
from py3plex.visualization.multilayer import draw_multilayer_default
from py3plex.core import multinet
# 加载多层网络
multilayer_network = multinet.multi_layer_network()
multilayer_network.load_network("datasets/goslim_mirna.gpickle", directed=False, input_type="gpickle_biomine")
# 可视化网络
multilayer_network.visualize_network(style="diagonal")
3.2 最佳实践
- 数据预处理:在加载网络之前,确保数据格式正确,并且数据已经过预处理。
- 选择合适的算法:根据具体需求选择合适的算法进行分析和可视化。
- 优化性能:对于大规模网络,可以考虑使用并行计算或优化算法以提高性能。
4. 典型生态项目
4.1 NetworkX
NetworkX 是一个用于创建、操作和研究复杂网络的 Python 库。Py3plex 可以与 NetworkX 结合使用,以扩展其功能。
4.2 Gephi
Gephi 是一个用于网络分析和可视化的开源软件。Py3plex 可以生成 Gephi 兼容的文件格式,以便在 Gephi 中进行进一步分析和可视化。
4.3 Node2Vec
Node2Vec 是一个用于学习网络中节点嵌入的算法。Py3plex 提供了 Node2Vec 的包装器,可以方便地进行节点嵌入的学习和可视化。
通过结合这些生态项目,Py3plex 可以提供更强大的网络分析和可视化功能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869