dstack项目中GCP紧凑放置策略的性能优化实践
2025-07-08 03:09:06作者:冯梦姬Eddie
背景介绍
在云计算环境中,虚拟机(VM)的物理布局对网络性能有着重要影响。特别是在高性能计算(HPC)和机器学习训练场景中,VM之间的网络延迟直接影响分布式训练的效率。Google Cloud Platform(GCP)提供了紧凑放置策略(Compact Placement Policy),允许用户控制VM的物理位置分布。
GCP紧凑放置策略详解
GCP的紧凑放置策略通过--max-distance参数来控制VM之间的物理距离:
- 值为1时:将VM放置在同一个机架内,提供最低的网络延迟
- 值为3时:将VM放置在相邻的集群中
- 默认值:未指定时由系统自动决定
需要注意的是,对于A4或A3 Ultra VM类型的实例,不能将--max-distance设置为1。
dstack的实现挑战
dstack项目在实现GCP紧凑放置策略时遇到了两个主要技术挑战:
- API限制:
--max-distance参数目前处于beta阶段,尚未集成到标准的Python客户端库中 - 策略选择:直接使用
COLLOCATED策略会导致某些实例类型(如a3-highgpu-8g)无法创建
解决方案与技术实现
经过实践测试,发现使用"AS_COMPACT"替代"COLLOCATED"策略可以解决上述问题。这一发现虽然未在官方文档中明确说明,但在实际应用中表现良好。
实现步骤:
- 使用Google API Python客户端库的beta版本接口
- 创建资源策略时指定
"collocation": "AS_COMPACT" - 适当设置
maxDistance参数
性能测试结果
在A3 High GPU实例上进行的NCCL测试表明,优化后的放置策略带来了明显的性能提升:
- 小数据量(1048576B)测试:带宽达到1.67GB/s
- 大数据量(8589934592B)测试:带宽提升至58.14GB/s
- 平均总线带宽:34.3305GB/s
最佳实践建议
- 对于需要低延迟的HPC工作负载,建议设置
maxDistance=1 - 使用
"AS_COMPACT"而非"COLLOCATED"策略以获得更好的兼容性 - 对于A4/A3 Ultra实例类型,避免设置
maxDistance=1 - 在实际部署前进行基准测试,验证策略效果
总结
通过合理配置GCP的紧凑放置策略,可以显著提升分布式计算任务的网络性能。dstack项目的这一优化实践为云计算环境中的高性能计算提供了有价值的参考。虽然某些API特性尚未正式发布,但通过深入的技术探索仍能找到有效的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143