在minimind项目中实现训练中断恢复的技术方案
2025-05-11 00:44:51作者:郁楠烈Hubert
训练中断恢复的重要性
在深度学习模型训练过程中,由于各种原因(如硬件故障、断电、程序崩溃等)导致训练中断是常见的情况。minimind项目作为一个深度学习框架,提供了训练中断后从中断点恢复的能力,这对于大规模模型训练尤为重要。
minimind中的模型保存机制
minimind项目在训练过程中会定期将模型权重保存到指定路径。默认情况下,模型权重保存在./out/目录下,文件名格式为pretrain_{dim}.pth(对于普通模型)或pretrain_{dim}_moe.pth(对于使用MoE机制的模型)。
实现训练恢复的技术细节
1. 权重文件加载
要实现从中断点恢复训练,首先需要加载之前保存的权重文件。在minimind项目中,这一功能通过以下代码实现:
model = Transformer(lm_config)
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'./out/pretrain_{lm_config.dim}{moe_path}.pth'
state_dict = torch.load(ckp, map_location=args.device)
这段代码首先初始化模型结构,然后根据是否使用MoE机制构造正确的权重文件路径,最后使用PyTorch的torch.load函数加载权重。
2. 权重键名处理
在加载权重时,minimind还处理了可能存在的键名前缀问题:
unwanted_prefix = '_orig_mod.'
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
这段代码检查权重字典中的键名,如果发现以_orig_mod.开头的键名,会将其去除前缀后重新存入字典。这是为了兼容某些情况下PyTorch会自动添加的前缀。
3. 权重加载到模型
最后,将处理后的权重加载到模型中:
model.load_state_dict(state_dict, strict=False)
这里使用strict=False参数,使得即使权重不完全匹配(如模型结构有微小变化)也能部分加载权重。
最佳实践建议
-
定期保存:确保训练脚本配置了合理的保存间隔,避免丢失过多训练进度。
-
版本控制:对于重要的训练过程,建议对保存的权重文件进行版本控制或备份。
-
恢复验证:在恢复训练后,建议先进行小批量数据的训练验证,确保模型行为正常。
-
日志记录:配合详细的训练日志,可以更准确地从中断点恢复训练状态。
扩展思考
对于更复杂的训练恢复场景,如优化器状态、学习率调度器等也需要保存和恢复,可以考虑:
- 保存完整的训练状态(包括优化器状态、当前epoch等)
- 实现检查点机制(checkpoint)
- 使用分布式训练时的同步恢复机制
minimind项目提供的这一基础恢复功能,为开发者构建更健壮的训练流程打下了良好基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869