在minimind项目中实现训练中断恢复的技术方案
2025-05-11 07:55:48作者:郁楠烈Hubert
训练中断恢复的重要性
在深度学习模型训练过程中,由于各种原因(如硬件故障、断电、程序崩溃等)导致训练中断是常见的情况。minimind项目作为一个深度学习框架,提供了训练中断后从中断点恢复的能力,这对于大规模模型训练尤为重要。
minimind中的模型保存机制
minimind项目在训练过程中会定期将模型权重保存到指定路径。默认情况下,模型权重保存在./out/
目录下,文件名格式为pretrain_{dim}.pth
(对于普通模型)或pretrain_{dim}_moe.pth
(对于使用MoE机制的模型)。
实现训练恢复的技术细节
1. 权重文件加载
要实现从中断点恢复训练,首先需要加载之前保存的权重文件。在minimind项目中,这一功能通过以下代码实现:
model = Transformer(lm_config)
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'./out/pretrain_{lm_config.dim}{moe_path}.pth'
state_dict = torch.load(ckp, map_location=args.device)
这段代码首先初始化模型结构,然后根据是否使用MoE机制构造正确的权重文件路径,最后使用PyTorch的torch.load
函数加载权重。
2. 权重键名处理
在加载权重时,minimind还处理了可能存在的键名前缀问题:
unwanted_prefix = '_orig_mod.'
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
这段代码检查权重字典中的键名,如果发现以_orig_mod.
开头的键名,会将其去除前缀后重新存入字典。这是为了兼容某些情况下PyTorch会自动添加的前缀。
3. 权重加载到模型
最后,将处理后的权重加载到模型中:
model.load_state_dict(state_dict, strict=False)
这里使用strict=False
参数,使得即使权重不完全匹配(如模型结构有微小变化)也能部分加载权重。
最佳实践建议
-
定期保存:确保训练脚本配置了合理的保存间隔,避免丢失过多训练进度。
-
版本控制:对于重要的训练过程,建议对保存的权重文件进行版本控制或备份。
-
恢复验证:在恢复训练后,建议先进行小批量数据的训练验证,确保模型行为正常。
-
日志记录:配合详细的训练日志,可以更准确地从中断点恢复训练状态。
扩展思考
对于更复杂的训练恢复场景,如优化器状态、学习率调度器等也需要保存和恢复,可以考虑:
- 保存完整的训练状态(包括优化器状态、当前epoch等)
- 实现检查点机制(checkpoint)
- 使用分布式训练时的同步恢复机制
minimind项目提供的这一基础恢复功能,为开发者构建更健壮的训练流程打下了良好基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0320- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
279
315

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3