MLRun v1.8.0-rc56版本发布:模型监控优化与SDK改进
MLRun是一个开源的机器学习运维平台,旨在简化机器学习工作流程的构建、部署和管理。它提供了从数据准备到模型部署的全生命周期管理能力,特别适合需要大规模部署机器学习模型的企业和团队。
核心更新内容
模型监控模块的重大改进
本次版本移除了对taoswrap的依赖,这是模型监控功能的一个重要优化。taoswrap原本作为时序数据库TDengine的Python连接器,在模型监控中用于存储和查询时序数据。移除这一依赖后,MLRun的模型监控功能将更加轻量化,减少了潜在的外部依赖问题,提升了系统的稳定性和可维护性。
模型监控是MLRun的关键功能之一,它能够实时跟踪生产环境中模型的性能指标,如预测延迟、吞吐量以及业务指标等。通过移除不必要的依赖,这一功能现在可以更高效地运行在各种环境中。
SDK接口优化
在SDK层面,本次版本对artifact列表接口进行了改进,正式弃用了limit参数。这一变更反映了MLRun团队对API设计理念的演进:
- 简化接口设计,减少不必要的参数
- 鼓励用户使用更高效的查询方式
- 为未来可能的性能优化做准备
对于开发者来说,这意味着需要检查现有代码中是否使用了artifact列表接口的limit参数,并考虑使用其他方式实现分页或限制结果集的需求。
系统优化与清理
在系统优化方面,本次发布包含了两项重要的清理工作:
- 从Docker镜像中移除了ensurepip文件夹,减少了镜像体积,提升了安全性
- 文档方面进行了更新,将开发分支中的一些重要内容合并到了1.8.x版本中
这些优化虽然看似微小,但对于长期维护一个稳定的机器学习平台至关重要。精简的Docker镜像意味着更快的部署速度和更小的攻击面,而完善的文档则能帮助用户更好地使用系统功能。
技术影响与升级建议
对于正在使用MLRun的团队,本次版本虽然是一个候选发布版(rc),但已经展现出良好的稳定性。特别是模型监控模块的改进,对于依赖这一功能的生产环境尤为重要。
升级时需要注意:
- 检查自定义监控逻辑是否依赖taoswrap
- 审查artifact列表查询代码,移除limit参数的使用
- 评估Docker镜像变化对现有部署流程的影响
MLRun持续在简化机器学习工作流方面做出努力,这个版本再次体现了团队对系统稳定性和用户体验的关注。随着机器学习工程实践的不断成熟,MLRun这样的平台正在成为企业AI能力建设的重要基础设施。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0327- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









