MLRun v1.8.0-rc56版本发布:模型监控优化与SDK改进
MLRun是一个开源的机器学习运维平台,旨在简化机器学习工作流程的构建、部署和管理。它提供了从数据准备到模型部署的全生命周期管理能力,特别适合需要大规模部署机器学习模型的企业和团队。
核心更新内容
模型监控模块的重大改进
本次版本移除了对taoswrap的依赖,这是模型监控功能的一个重要优化。taoswrap原本作为时序数据库TDengine的Python连接器,在模型监控中用于存储和查询时序数据。移除这一依赖后,MLRun的模型监控功能将更加轻量化,减少了潜在的外部依赖问题,提升了系统的稳定性和可维护性。
模型监控是MLRun的关键功能之一,它能够实时跟踪生产环境中模型的性能指标,如预测延迟、吞吐量以及业务指标等。通过移除不必要的依赖,这一功能现在可以更高效地运行在各种环境中。
SDK接口优化
在SDK层面,本次版本对artifact列表接口进行了改进,正式弃用了limit参数。这一变更反映了MLRun团队对API设计理念的演进:
- 简化接口设计,减少不必要的参数
- 鼓励用户使用更高效的查询方式
- 为未来可能的性能优化做准备
对于开发者来说,这意味着需要检查现有代码中是否使用了artifact列表接口的limit参数,并考虑使用其他方式实现分页或限制结果集的需求。
系统优化与清理
在系统优化方面,本次发布包含了两项重要的清理工作:
- 从Docker镜像中移除了ensurepip文件夹,减少了镜像体积,提升了安全性
- 文档方面进行了更新,将开发分支中的一些重要内容合并到了1.8.x版本中
这些优化虽然看似微小,但对于长期维护一个稳定的机器学习平台至关重要。精简的Docker镜像意味着更快的部署速度和更小的攻击面,而完善的文档则能帮助用户更好地使用系统功能。
技术影响与升级建议
对于正在使用MLRun的团队,本次版本虽然是一个候选发布版(rc),但已经展现出良好的稳定性。特别是模型监控模块的改进,对于依赖这一功能的生产环境尤为重要。
升级时需要注意:
- 检查自定义监控逻辑是否依赖taoswrap
- 审查artifact列表查询代码,移除limit参数的使用
- 评估Docker镜像变化对现有部署流程的影响
MLRun持续在简化机器学习工作流方面做出努力,这个版本再次体现了团队对系统稳定性和用户体验的关注。随着机器学习工程实践的不断成熟,MLRun这样的平台正在成为企业AI能力建设的重要基础设施。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00