NeuralCompression 项目教程
2024-09-28 08:51:28作者:牧宁李
1. 项目目录结构及介绍
NeuralCompression 项目的目录结构如下:
NeuralCompression/
├── neuralcompression/
│ ├── data/
│ ├── distributions/
│ ├── functional/
│ ├── layers/
│ ├── metrics/
│ ├── models/
│ └── optim/
├── projects/
│ ├── bits_back_diffusion/
│ ├── deep_video_compression/
│ ├── illm/
│ └── jax_entropy_coders/
├── tutorials/
├── tests/
├── .gitattributes
├── .gitignore
├── LICENSE
├── MANIFEST.in
├── NOTICE
├── README.md
├── WEIGHTS_LICENSE
├── hubconf.py
├── pyproject.toml
├── setup.cfg
└── setup.py
目录结构介绍
-
neuralcompression/: 核心包,包含神经压缩研究的核心工具。代码需要严格的代码质量检查和审查。
- data/: PyTorch 数据加载器,用于各种数据集。
- distributions/: 压缩的概率模型扩展。
- functional/: 图像变形、信息成本、浮点运算计数等方法。
- layers/: 压缩模型的构建块。
- metrics/: 评估模型性能的 torchmetrics 类。
- models/: 完整的压缩模型。
- optim/: 有用的优化工具。
-
projects/: 包含用于复现论文和训练基线的代码。代码不强制进行严格的代码质量检查和审查。
- bits_back_diffusion/: 使用扩散模型的比特回传编码代码。
- deep_video_compression/: 深度视频压缩代码。
- illm/: MS-ILLM 的 PyTorch 实现。
- jax_entropy_coders/: JAX 中的算术编码和 ANS 实现。
-
tutorials/: 包含交互式教程笔记本,详细介绍包的不同部分。
-
tests/: 包含项目的测试代码。
-
其他文件:
- .gitattributes: Git 属性配置文件。
- .gitignore: Git 忽略配置文件。
- LICENSE: 项目许可证文件。
- MANIFEST.in: 清单文件。
- NOTICE: 通知文件。
- README.md: 项目介绍和使用说明。
- WEIGHTS_LICENSE: 模型权重许可证文件。
- hubconf.py: PyTorch Hub 配置文件。
- pyproject.toml: Python 项目配置文件。
- setup.cfg: 安装配置文件。
- setup.py: 安装脚本。
2. 项目启动文件介绍
NeuralCompression 项目的启动文件主要是 setup.py 和 hubconf.py。
setup.py
setup.py 是 Python 项目的标准安装脚本。它用于定义项目的元数据、依赖项和安装过程。通过运行 python setup.py install,可以安装 NeuralCompression 项目。
hubconf.py
hubconf.py 是 PyTorch Hub 的配置文件。它定义了可以通过 PyTorch Hub 加载的预训练模型。通过 torch.hub.load('facebookresearch/NeuralCompression', 'model_name'),可以加载指定的预训练模型。
3. 项目的配置文件介绍
NeuralCompression 项目的配置文件主要包括 setup.cfg 和 pyproject.toml。
setup.cfg
setup.cfg 是 Python 项目的配置文件,用于定义安装过程中的各种配置选项。它通常包含项目的元数据、依赖项、测试配置等。
pyproject.toml
pyproject.toml 是 Python 项目的配置文件,用于定义项目的构建系统和其他配置。它通常包含项目的依赖项、构建工具配置等。
通过这些配置文件,可以定制项目的安装和构建过程,确保项目在不同环境中的一致性和可重复性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868