Miller工具中CSV转JSON时的字段丢失问题解析
问题背景
在使用Miller工具进行CSV到JSON格式转换时,用户发现部分字段数据丢失。具体表现为:当CSV文件中存在类似"baseline-final-test"和"baseline-final-test.last_checkpoint"这样的字段名时,前者会被后者覆盖或忽略,导致最终JSON输出中缺少部分数据。
问题重现
以一个简单的CSV文件为例:
expt_name,baseline-final-test,baseline-final-test.last_checkpoint,stage-all.001,stage-all.001.last_checkpoint
lr=1.0e-5_e=16/000,40.93,39.75,44.05,43.13
使用命令mlr --icsv --ojson cat < input.csv转换后,输出JSON中"baseline-final-test"和"stage-all.001"字段的值会丢失,而只保留了带有".last_checkpoint"后缀的字段。
原因分析
这个问题源于Miller默认的"自动展开"(auto-unflatten)功能。当Miller遇到包含点号(.)的字段名时,会默认将其解析为JSON的嵌套结构。例如:
-
"baseline-final-test.last_checkpoint"会被解析为:
{ "baseline-final-test": { "last_checkpoint": 39.75 } } -
"stage-all.001.last_checkpoint"会被解析为:
{ "stage-all": { "001": { "last_checkpoint": 43.13 } } }
这种自动展开机制会导致原始字段名被覆盖,因为Miller会将点号前的部分视为父级字段。
解决方案
Miller提供了两种方式来解决这个问题:
1. 禁用自动展开功能
使用--no-auto-unflatten参数可以完全禁用自动展开功能:
mlr --icsv --ojson --no-auto-unflatten cat input.csv
这样所有字段名都会保持原样输出到JSON中,不会进行任何嵌套解析。
2. 自定义字段分隔符
使用--flatsep参数可以指定一个不同于点号的分隔符:
mlr --icsv --ojson --flatsep : cat input.csv
这样只有冒号(:)会被视为字段分隔符,而点号会被当作普通字符处理。
最佳实践建议
-
明确数据格式需求:在转换前先确定是否需要JSON的嵌套结构。如果需要平铺结构,使用
--no-auto-unflatten;如果需要嵌套但想自定义分隔符,使用--flatsep。 -
字段命名规范:在设计CSV文件时,尽量避免使用点号作为字段名的一部分,除非确实需要Miller的自动展开功能。
-
验证转换结果:使用
mlr --ijson --ocsv进行反向转换,验证数据是否完整保留。
总结
Miller的自动展开功能虽然强大,但在处理包含点号的字段名时可能会导致数据丢失。理解这一机制并合理使用--no-auto-unflatten和--flatsep参数,可以确保数据在格式转换过程中的完整性。对于需要处理复杂CSV数据的用户,掌握这些技巧将大大提高工作效率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00