Unsloth项目中的Llama 3微调问题分析与解决方案
2025-05-04 03:39:25作者:袁立春Spencer
问题背景
在使用Unsloth项目对Llama 3模型进行微调时,许多开发者遇到了一个常见错误:"Unsloth: Untrained tokens found, but embed_tokens & lm_head not trainable, causing NaNs"。这个问题通常发生在尝试使用Llama 3基础模型(base model)进行微调时,而不是使用指令微调版本(instruct model)。
问题本质
这个错误的根本原因在于Unsloth框架中新增了一个安全检查机制。该机制会检测模型中的嵌入层(embed_tokens)和语言模型头部(lm_head)是否包含未经训练的零值向量。当检测到这些未训练的token时,如果这两个关键组件没有被设置为可训练状态,就会导致NaN(非数值)问题,从而触发错误。
技术细节分析
-
嵌入层与语言模型头部的作用:
- 嵌入层(embed_tokens)负责将输入的token ID转换为向量表示
- 语言模型头部(lm_head)负责将隐藏状态转换为词汇表上的概率分布
- 这两个组件对模型性能至关重要
-
为什么会出现未训练的token:
- 使用基础模型而非指令微调版本
- 数据集中包含特殊符号(如LaTeX符号)或罕见token
- 模型权重初始化问题
-
NaN问题的产生机制:
- 当模型遇到未训练的token时,前向传播会产生异常值
- 这些异常值在反向传播过程中可能导致梯度爆炸或消失
- 最终结果就是出现NaN,使训练无法继续
解决方案
-
推荐方案: 使用Llama 3的指令微调版本("unsloth/llama-3-8b-Instruct-bnb-4bit"),这是最直接有效的解决方法。
-
替代方案: 如果必须使用基础模型,可以通过以下方式修改训练配置:
model = FastLanguageModel.get_peft_model( model, target_modules = [ "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "embed_tokens", # 添加嵌入层 "lm_head", # 添加语言模型头部 ], # 其他参数... ) -
数据处理建议:
- 检查数据集中是否包含特殊符号或罕见token
- 考虑对数据进行预处理,移除或替换可能引起问题的特殊字符
多轮对话推理实现
对于需要测试微调后的多轮对话模型的情况,可以扩展单轮对话的实现方式。关键点在于:
- 构建完整的对话历史消息列表
- 保持角色("user"和"assistant")交替的正确性
- 确保应用了正确的聊天模板
示例实现:
messages = [
{"role": "assistant", "content": "第一轮助手回复"},
{"role": "user", "content": "用户第二轮提问"},
{"role": "assistant", "content": "第二轮助手回复"},
# 可以继续添加更多轮次的对话
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to("cuda")
outputs = model.generate(input_ids=inputs, max_new_tokens=256)
print(tokenizer.batch_decode(outputs))
最佳实践建议
- 始终使用指令微调版本进行对话任务微调
- 在微调前仔细检查数据格式和质量
- 对于特殊需求,合理配置可训练模块
- 监控训练过程中的损失值变化,及时发现潜在问题
- 使用适当的学习率调度策略,特别是对于嵌入层和lm_head
通过理解这些技术细节和解决方案,开发者可以更有效地利用Unsloth项目进行Llama 3模型的微调工作,避免常见的陷阱,提高模型训练的成功率和最终性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19