LlamaIndex项目中使用非OpenAI模型的技术实践
2025-05-02 04:51:53作者:范垣楠Rhoda
在LlamaIndex项目中,开发者经常会遇到需要替换默认OpenAI模型的情况。本文将通过一个典型场景,详细介绍如何正确配置LlamaIndex以使用DeepSeek等非OpenAI模型。
问题背景
当开发者尝试在LlamaIndex中使用DeepSeek模型替代OpenAI时,即使已经设置了全局LLM模型,系统仍然会调用OpenAI API并导致配额错误。这实际上是因为对LlamaIndex的模型配置机制理解不够全面所致。
技术原理
LlamaIndex的文档处理流程涉及两种核心模型:
- LLM模型:负责生成自然语言响应,处理用户查询
- Embedding模型:负责将文档内容转换为向量表示,用于索引和检索
默认情况下,LlamaIndex会同时使用OpenAI的LLM和Embedding模型。仅替换LLM模型而不更改Embedding模型配置,系统仍会尝试调用OpenAI的Embedding服务。
完整解决方案
要完全避免使用OpenAI服务,需要同时配置LLM和Embedding模型。以下是使用DeepSeek LLM和HuggingFace Embedding的完整示例:
from llama_index.llms.deepseek import DeepSeek
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
# 配置DeepSeek作为LLM
llm = DeepSeek(model="deepseek-chat", api_key="your_api_key")
Settings.llm = llm
# 配置HuggingFace Embedding模型
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# 文档加载和索引构建
documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
# 查询处理
query_engine = index.as_query_engine()
response = query_engine.query("查询内容")
print(response)
关键注意事项
-
模型兼容性:确保选择的Embedding模型与文档语言匹配,例如英文文档使用英文优化的Embedding模型
-
性能考量:本地Embedding模型可能比云服务慢,但能提供更好的数据隐私性
-
资源消耗:较大的Embedding模型会占用更多内存,在资源有限的环境中应考虑轻量级模型
-
API密钥管理:虽然替换了OpenAI,但仍需妥善保管DeepSeek或其他服务的API密钥
扩展建议
对于生产环境,还可以考虑:
- 使用模型缓存减少重复计算
- 实现自定义的模型加载逻辑
- 监控模型使用情况和性能指标
- 针对特定领域微调Embedding模型
通过全面理解LlamaIndex的模型架构,开发者可以灵活地组合不同供应商的模型服务,构建符合特定需求的高效文档处理流程。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896