Kubeflow KFServing 新增 Huggingface 模型服务运行时支持
Kubeflow KFServing 项目近期计划新增对 Huggingface 模型的原生支持,通过引入两种专门的 Serving Runtime 实现方案,为 Huggingface 模型在 Kubernetes 环境中的部署提供更高效、更灵活的选择。
背景与需求
随着 Huggingface 在 NLP 领域的广泛应用,越来越多的企业希望将训练好的 Huggingface 模型部署到生产环境中。传统的部署方式往往需要用户自行编写服务化代码,缺乏标准化且维护成本高。KFServing 作为 Kubernetes 上专业的模型服务框架,计划通过新增两种运行时来简化这一过程。
技术方案设计
方案一:纯 Huggingface 运行时 (kserve-huggingface)
第一种运行时采用单一容器架构,直接使用 Huggingface 的原生 API 来处理模型推理请求。这种方案的特点是:
- 架构简单,只有一个 kserve-container 容器
- 完全遵循 Huggingface 的推理协议
- 适合对延迟要求不高但需要简单部署的场景
用户可以通过简单的 YAML 配置来部署模型,只需指定模型格式为 huggingface 并选择对应的运行时即可。存储 URI 可以指向包含模型文件的任何兼容存储系统。
方案二:Huggingface-Triton 组合运行时 (kserve-huggingface-triton)
第二种运行时采用了更复杂的架构设计,通过组合多个组件来提升性能:
- 包含两个协同工作的容器:
- transformer-container:负责文本的预处理(如 tokenization)
- kserve-container:负责实际的模型推理
- 使用 Triton 推理服务器作为后端,提供优化的推理性能
- 适合对性能要求高的生产环境
这种架构将计算密集型的 tokenization 步骤与模型推理分离,同时利用 Triton 的高性能推理能力,特别适合处理大规模并发请求的场景。
技术实现细节
在实现上,这两种运行时都需要处理以下关键问题:
- 模型加载与初始化:需要支持从各种存储系统加载 Huggingface 模型
- 请求处理管道:实现标准的预测接口,处理输入输出转换
- 资源管理:合理配置 CPU/GPU 资源,优化内存使用
- 批处理支持:特别是对于 Triton 版本,需要实现高效的批处理机制
对于 Triton 版本,还需要特别注意:
- 容器间通信:设计高效的进程间通信机制
- 数据序列化:优化 token ids 的传输格式
- 错误处理:确保一个容器失败时整个系统能优雅降级
应用场景与选择建议
两种运行时各有适用场景:
-
纯 Huggingface 运行时适合:
- 快速原型开发
- 小规模部署
- 需要完全兼容 Huggingface API 的场景
-
Huggingface-Triton 运行时适合:
- 生产环境大规模部署
- 对延迟和吞吐量有严格要求的场景
- 需要利用 Triton 高级功能(如动态批处理)的情况
未来展望
这一功能的引入将使 KFServing 在 NLP 模型服务领域的能力更加完善。未来还可以考虑:
- 支持更多的 Huggingface 模型类型和任务
- 增加自动缩放策略优化
- 集成更多的性能监控指标
- 支持模型的热更新
通过这两种运行时,KFServing 为用户提供了从简单到高性能的完整 Huggingface 模型服务解决方案,大大降低了将 NLP 模型投入生产的门槛。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









