深入理解Gemini 2.5 AI工程中的模型上下文协议(MCP)
2025-06-05 02:47:23作者:申梦珏Efrain
什么是模型上下文协议(MCP)
模型上下文协议(Model Context Protocol,简称MCP)是一种创新的AI扩展框架,它为大型语言模型(LLM)与外部数据源和工具的连接提供了标准化解决方案。与传统的函数调用方式不同,MCP采用了一种去中心化的架构,允许AI模型通过标准协议连接到远程服务器获取工具和资源。
MCP的核心优势在于它解决了传统AI集成中的几个关键痛点:
- 解耦设计:将AI能力与工具实现分离,开发者无需在本地代码中硬编码各种功能
- 动态扩展:新的工具和服务可以随时接入,无需修改AI模型本身
- 统一接口:所有MCP兼容的服务都遵循相同的协议规范
- 安全可控:权限管理和访问控制集中在服务端实现
MCP的工作原理
MCP采用客户端-服务器架构,主要包含三个核心组件:
- MCP客户端:集成在AI应用中的组件,负责与MCP服务器通信
- MCP服务器:提供具体工具和服务的实现
- 协议规范:定义通信格式和交互流程的标准
在实际应用中,当AI模型需要调用外部功能时,会通过MCP客户端向注册的MCP服务器发起请求,服务器处理后将结果返回给模型,模型再整合这些信息生成最终响应。
实战:使用MCP构建天气查询应用
让我们通过一个具体示例来理解MCP的实际应用。我们将构建一个查询天气的AI应用,使用MCP连接天气服务。
首先安装必要的依赖:
%pip install mcp
然后配置Gemini客户端和MCP服务器连接:
from google import genai
from google.genai import types
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from datetime import datetime
# 初始化Gemini客户端
MODEL_ID = "gemini-2.5-flash-preview-05-20"
client = genai.Client(api_key=GEMINI_API_KEY)
# 配置MCP服务器参数
server_params = StdioServerParameters(
command="npx",
args=["-y", "@philschmid/weather-mcp"],
env=None
)
async def get_weather():
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
prompt = f"伦敦今天的天气如何?当前日期是{datetime.now().strftime('%Y-%m-%d')}"
await session.initialize()
response = await client.aio.models.generate_content(
model="gemini-2.0-flash",
contents=prompt,
config=genai.types.GenerateContentConfig(
temperature=0,
tools=[session]
)
)
print(response.text)
await get_weather()
这段代码展示了MCP的典型工作流程:
- 创建MCP服务器连接
- 初始化会话
- 将MCP会话作为工具传递给AI模型
- 模型自动识别需要调用的外部功能
- 获取并整合结果
进阶:构建交互式MCP代理
为了更深入理解MCP,我们可以构建一个交互式命令行代理,连接DeepWiki MCP服务器查询信息:
from mcp.client.streamable_http import streamablehttp_client
async def wiki_search_agent():
async with streamablehttp_client("https://mcp.deepwiki.com/mcp") as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
config = genai.types.GenerateContentConfig(
temperature=0,
tools=[session]
)
chat = await client.aio.chats.create(
model=MODEL_ID,
config=config
)
while True:
query = input("请输入您想查询的内容(输入q退出): ")
if query.lower() == 'q':
break
response = await chat.send_message(query)
print(response.text)
await wiki_search_agent()
这个代理展示了MCP的几个关键特性:
- 通过HTTP协议连接远程MCP服务器
- 保持持久会话状态
- 动态处理用户输入
- 自动路由到合适的工具
MCP的最佳实践
在实际工程中使用MCP时,有几个关键点需要注意:
- 错误处理:MCP调用可能因网络或服务问题失败,需要完善的错误处理机制
- 超时控制:设置合理的超时时间,避免长时间等待
- 服务发现:在复杂应用中,可能需要动态发现可用的MCP服务
- 权限管理:敏感操作需要严格的权限控制
- 性能监控:跟踪MCP调用的延迟和成功率
MCP与函数调用的对比
MCP与传统的函数调用方式相比有显著优势:
| 特性 | MCP | 传统函数调用 |
|---|---|---|
| 部署方式 | 远程服务 | 本地集成 |
| 扩展性 | 动态扩展 | 需要重新部署 |
| 维护性 | 服务端维护 | 客户端维护 |
| 安全性 | 集中管控 | 分散管理 |
| 语言支持 | 协议无关 | 语言绑定 |
总结与展望
模型上下文协议(MCP)代表了AI工程领域的重要进步,它通过标准化接口解决了AI系统与外部服务集成的核心挑战。Gemini 2.5对MCP的原生支持使得开发者能够更轻松地构建功能丰富的AI应用。
未来,随着MCP生态系统的成熟,我们可以预见:
- 更多专业领域的MCP服务出现
- 更完善的开发工具链
- 更强大的服务编排能力
- 更细粒度的权限控制机制
对于开发者而言,掌握MCP技术将大大提升构建复杂AI应用的能力和效率。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134