Loguru项目中如何捕获Python标准警告日志
2025-05-10 21:04:50作者:裘晴惠Vivianne
在Python开发过程中,我们经常使用标准库中的warnings模块来发出警告信息。这些警告对于调试和问题排查非常有价值,但默认情况下它们只会输出到控制台而不会被记录到日志文件中。本文将介绍如何在使用Loguru日志库时,同时捕获这些标准警告信息。
问题背景
Python开发者通常面临一个选择:是使用标准的warnings.warn()方法发出警告,还是使用日志系统记录警告信息。理想情况下,我们希望两者能够协同工作,既能在控制台看到警告,又能将这些警告信息持久化到日志文件中。
解决方案
Loguru提供了灵活的机制来捕获标准警告。核心思路是通过重写warnings模块的showwarning函数,在保持原有警告行为的同时,将警告信息转发给Loguru的日志系统。
具体实现代码如下:
import warnings
from loguru import logger
# 保存原始的showwarning函数
original_showwarning = warnings.showwarning
def custom_showwarning(message, *args, **kwargs):
# 使用Loguru记录警告
logger.warning(message)
# 调用原始函数保持标准警告行为
original_showwarning(message, *args, **kwargs)
# 替换默认的showwarning实现
warnings.showwarning = custom_showwarning
实现原理
Python的warnings模块在发出警告时,最终会调用showwarning函数来处理警告信息的显示。通过替换这个函数,我们可以在警告信息被显示前拦截它,并将其发送到Loguru的日志系统中。
这种方法的优势在于:
- 完全兼容现有的warnings.warn()调用
- 不影响警告的原始行为(仍然会在控制台显示)
- 无需修改现有代码即可实现警告日志的记录
进阶用法
对于更复杂的需求,我们可以进一步定制警告处理逻辑:
def enhanced_showwarning(message, category, filename, lineno, file=None, line=None):
# 格式化更详细的警告信息
log_message = f"{filename}:{lineno} - {category.__name__}: {message}"
logger.warning(log_message)
# 保持原始警告行为
original_showwarning(message, category, filename, lineno, file, line)
warnings.showwarning = enhanced_showwarning
这个增强版本可以记录警告发生的文件名、行号和警告类别,为后续的问题排查提供更多上下文信息。
注意事项
- 建议在程序初始化时就设置好警告捕获,避免遗漏早期发出的警告
- 注意线程安全性,特别是在多线程环境中
- 考虑性能影响,虽然Loguru性能很好,但在高频警告场景仍需注意
通过这种集成方式,开发者可以充分利用Python标准警告机制和Loguru强大的日志功能,实现更完善的应用程序监控和问题诊断能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869