Loguru项目中如何捕获Python标准警告日志
2025-05-10 07:45:22作者:裘晴惠Vivianne
在Python开发过程中,我们经常使用标准库中的warnings模块来发出警告信息。这些警告对于调试和问题排查非常有价值,但默认情况下它们只会输出到控制台而不会被记录到日志文件中。本文将介绍如何在使用Loguru日志库时,同时捕获这些标准警告信息。
问题背景
Python开发者通常面临一个选择:是使用标准的warnings.warn()方法发出警告,还是使用日志系统记录警告信息。理想情况下,我们希望两者能够协同工作,既能在控制台看到警告,又能将这些警告信息持久化到日志文件中。
解决方案
Loguru提供了灵活的机制来捕获标准警告。核心思路是通过重写warnings模块的showwarning函数,在保持原有警告行为的同时,将警告信息转发给Loguru的日志系统。
具体实现代码如下:
import warnings
from loguru import logger
# 保存原始的showwarning函数
original_showwarning = warnings.showwarning
def custom_showwarning(message, *args, **kwargs):
# 使用Loguru记录警告
logger.warning(message)
# 调用原始函数保持标准警告行为
original_showwarning(message, *args, **kwargs)
# 替换默认的showwarning实现
warnings.showwarning = custom_showwarning
实现原理
Python的warnings模块在发出警告时,最终会调用showwarning函数来处理警告信息的显示。通过替换这个函数,我们可以在警告信息被显示前拦截它,并将其发送到Loguru的日志系统中。
这种方法的优势在于:
- 完全兼容现有的warnings.warn()调用
- 不影响警告的原始行为(仍然会在控制台显示)
- 无需修改现有代码即可实现警告日志的记录
进阶用法
对于更复杂的需求,我们可以进一步定制警告处理逻辑:
def enhanced_showwarning(message, category, filename, lineno, file=None, line=None):
# 格式化更详细的警告信息
log_message = f"{filename}:{lineno} - {category.__name__}: {message}"
logger.warning(log_message)
# 保持原始警告行为
original_showwarning(message, category, filename, lineno, file, line)
warnings.showwarning = enhanced_showwarning
这个增强版本可以记录警告发生的文件名、行号和警告类别,为后续的问题排查提供更多上下文信息。
注意事项
- 建议在程序初始化时就设置好警告捕获,避免遗漏早期发出的警告
- 注意线程安全性,特别是在多线程环境中
- 考虑性能影响,虽然Loguru性能很好,但在高频警告场景仍需注意
通过这种集成方式,开发者可以充分利用Python标准警告机制和Loguru强大的日志功能,实现更完善的应用程序监控和问题诊断能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.65 K
Ascend Extension for PyTorch
Python
131
157
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
198
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.46 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
206