PromptDet项目安装与配置指南
2025-04-21 12:20:00作者:魏侃纯Zoe
1. 项目基础介绍
PromptDet项目是一个面向开放词汇对象检测的研究项目,旨在通过未经过手动注释的图片来扩展对象检测器对新型/未见类别的检测能力。该项目的研究论文在ECCV 2022上发表。项目主要使用Python编程语言实现。
2. 项目使用的关键技术和框架
- Visual-Language Model: 使用预训练的视觉语言模型中的文本编码器对类无关的对象建议进行分类。
- Regional Prompt Learning (RPL): 提出区域提示学习,以对齐视觉特征空间和文本嵌入空间。
- Self-Training Framework: 利用自训练框架,在大量未经过筛选的网络图片上进行训练。
- MMDetection: 项目基于MMDetection框架进行开发,这是一个流行的开源对象检测工具箱。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统满足以下要求:
- Python 3.6 或更高版本
- pip(Python包管理器)
- CUDA(用于GPU加速,如果使用GPU的话)
详细安装步骤
-
克隆项目仓库
在命令行中执行以下命令来克隆仓库:
git clone https://github.com/fcjian/PromptDet.git cd PromptDet -
安装依赖
根据项目要求安装必要的Python包:
pip install -r requirements.txt -
安装MMDetection
由于PromptDet基于MMDetection框架,因此需要先安装MMDetection。可以从源代码安装:
git clone https://github.com/open-mmlab/mmdetection.git cd mmdetection pip install -v . # 注意:确保使用的是虚拟环境 cd .. -
准备数据集
项目使用LVIS和MS-COCO数据集进行训练和评估。需要下载对应的数据集并放置在项目指定的目录下。
-
下载预训练模型
根据项目文档,可能需要下载预训练的视觉语言模型和其他相关模型文件。
-
配置文件
根据需要修改
config目录下的配置文件,以适应不同的训练需求和数据集。 -
开始训练
使用以下命令开始训练过程:
python tools/dist_train.sh configs/promptdet/promptdet_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py 4其中
4代表使用4个GPU进行训练。如果只使用一个GPU,则去掉该参数。 -
评估模型
训练完成后,使用以下命令进行模型评估:
python tools/dist_test.sh configs/promptdet/promptdet_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py work_dirs/promptdet_r50_fpn_sample1e-3_mstrain_1x_lvis_v1/ 4 --eval bbox segm这将评估模型的边界框和分割质量。
请确保按照项目的官方文档进行操作,以获取最佳的安装和配置效果。如果在安装过程中遇到问题,可以参考项目的README.md文件或相关社区论坛以获得帮助。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147