BoTorch项目中深度核学习模型在贝叶斯优化中的应用探索
2025-06-25 01:05:02作者:龚格成
背景介绍
在材料科学领域,电子显微镜作为昂贵且耗时的"黑箱"函数,使得研究人员需要采用主动学习策略来优化实验过程。BoTorch作为基于PyTorch的贝叶斯优化库,为解决这类问题提供了强大工具。本文探讨如何将深度核学习(DKL)模型集成到BoTorch框架中,特别是针对多目标优化场景的应用。
深度核学习模型架构
核心模型采用卷积神经网络作为特征提取器,结合高斯过程构建深度核学习系统。特征提取网络包含两个卷积层和最大池化层,最终通过动态生成的全连接层输出特征向量。这种设计允许模型自动适应不同尺寸的输入图像。
高斯过程部分采用变分推断策略,使用Cholesky分解处理变分分布,并学习诱导点位置。模型实现了posterior
方法以兼容BoTorch的离散优化函数,并处理了各种输入形状的转换问题。
单目标优化实现
在单目标场景下,该DKL模型已成功应用于贝叶斯优化流程。模型与LogExpectedImprovement
获取函数配合良好,能够通过optimize_acqf_discrete()
函数有效选择候选样本。关键实现点包括:
- 输入形状的动态处理,支持不同维度的图像输入
- 特征提取层参数的动态初始化
- 后验分布的标准化输出接口
- 噪声处理和超参数管理
多目标优化挑战
将DKL模型扩展至多目标场景面临以下技术挑战:
- 多模型集成问题:需要将多个DKL模型组合成
ModelListGP
结构 - 获取函数兼容性:确保模型输出与
qNEHVI
等高级获取函数兼容 - 特征共享策略:不同目标是否需要共享特征提取器或使用独立网络
- 计算效率优化:多模型联合训练的计算开销管理
技术实现建议
针对多目标DKL模型的实现,建议考虑以下技术路线:
- 采用独立特征提取器:为每个目标训练专门的DKL模型,通过
ModelListGP
集成 - 共享底层特征:设计部分共享的网络结构,平衡模型容量和训练效率
- 渐进式训练策略:先预训练特征提取器,再联合优化高斯过程部分
- 自定义获取函数:必要时调整获取函数实现以适应DKL特性
应用前景
这种技术组合在材料科学领域具有广阔应用前景,特别是在以下场景:
- 高成本实验的主动学习设计
- 多目标材料性能优化
- 微观结构图像的特征自动提取与关联分析
- 跨尺度材料性能预测
随着深度学习和贝叶斯优化技术的不断发展,这种融合方法将为材料发现和优化提供更强大的工具。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp音乐播放器项目中的函数调用问题解析9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp 课程中关于角色与职责描述的语法优化建议
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105