JobRunr 7.5.0 版本发布:分布式任务调度新特性解析
项目简介
JobRunr 是一个开源的分布式任务调度和后台处理库,它可以帮助开发者在 Java 应用中轻松实现异步任务处理。JobRunr 提供了简单易用的 API,支持任务调度、后台作业处理、分布式任务执行等功能,同时具备高性能和可靠性。它支持多种存储后端,包括关系型数据库、NoSQL 数据库等,并提供了丰富的监控和管理界面。
版本亮点
JobRunr 7.5.0 版本带来了多项重要更新和改进,其中最值得关注的是对 Quarkus 3.20 (LTS) 和 Micronaut Framework 4.8 的官方支持。这两个框架都是当前 Java 生态系统中非常流行的轻量级微服务框架,此次更新使得在这些框架中使用 JobRunr 更加稳定和便捷。
主要更新内容
1. 内存存储提供程序配置改进
在之前的版本中,如果用户没有明确配置存储提供程序(StorageProvider),JobRunr 会自动回退到 InMemoryStorageProvider。从 7.5.0 版本开始,这种行为被移除了,用户需要显式配置才能使用内存存储。
现在可以通过简单的属性配置来启用内存存储:
jobrunr.database.type=mem
这一变化使得配置更加明确,避免了潜在的生产环境误用风险。内存存储通常只适用于开发和测试环境,生产环境应该使用持久化的存储方案。
2. JobRequest 和 JobRequestHandler 的改进
JobRunr 7.5.0 增强了 JobRequest 和 JobRequestHandler 的错误检测能力。现在当 JobRequest 引用了未知的 JobRequestHandler 时,系统能够更早地发现这种配置错误,而不是等到运行时才抛出异常。
这种改进对于大型项目特别有价值,可以帮助开发者在编译阶段或应用启动时就发现潜在的问题,而不是等到任务实际执行时才暴露出来。
3. 性能优化和错误修复
新版本修复了一个可能导致 IndexOutOfBoundsException 的问题,提高了系统的稳定性。此外,项目团队还对内部架构进行了多项优化,包括:
- 从 Cypress 迁移到 Playwright 进行 UI 端到端测试
- 添加架构测试确保名为 Abstract 的类确实有 abstract 修饰符
- 清理存储提供程序测试中的数据源创建逻辑
- 整体构建系统的改进
这些内部改进虽然对最终用户不可见,但有助于提高项目的整体质量和维护性。
JobRunr Pro 7.5.0 专业版更新
专业版在基础版的基础上增加了对 CockroachDB 的支持,新增了 CockroachStorageProvider。CockroachDB 是一个分布式 SQL 数据库,具有高可用性和强一致性特性,非常适合作为 JobRunr 的存储后端。
此外,专业版还修复了使用 JobBuilder 创建 BatchJob 时的一个问题,使得批量任务创建更加可靠。
升级建议
对于现有用户,升级到 7.5.0 版本需要注意以下几点:
- 如果之前依赖自动回退到内存存储的行为,现在需要显式配置
- 使用 Quarkus 或 Micronaut 的用户可以放心升级到最新框架版本
- 专业版用户可以考虑评估 CockroachDB 作为新的存储选项
总结
JobRunr 7.5.0 版本在框架兼容性、配置明确性和错误检测方面都有显著改进,使得这个优秀的任务调度库更加成熟和可靠。特别是对 Quarkus 和 Micronaut 最新版本的支持,让使用这些框架的团队能够更顺畅地集成 JobRunr。
专业版新增的 CockroachDB 支持也为需要高可用性分布式存储的用户提供了更多选择。无论是基础版还是专业版,7.5.0 版本都值得现有用户升级,也值得新用户考虑采用。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









