Apache RocketMQ新增Broker端Topic和订阅组创建时间监控指标
2025-05-10 22:09:59作者:卓艾滢Kingsley
背景与需求分析
在分布式消息系统中,Topic和订阅组的创建是基础且关键的操作。Apache RocketMQ作为一款高性能、高可靠的消息中间件,其管理控制台和运维体系需要全面监控这类核心操作的性能表现。然而,当前版本的RocketMQ在Broker端缺乏对Topic和订阅组创建时间的监控能力,这给系统性能分析和问题排查带来了不便。
技术方案设计
监控指标规划
新增两个直方图类型的监控指标,用于精确记录创建操作的耗时分布:
-
rocketmq_create_topic_time:记录Topic创建耗时
- 单位:毫秒
- 分桶策略:10ms、100ms、1s、3s、5s及溢出桶
- 标签维度:
- 集群名称
- 节点类型
- 节点ID
- 请求是否成功
- 是否为系统Topic
-
rocketmq_create_subscription_time:记录订阅组创建耗时
- 单位:毫秒
- 分桶策略:同上
- 标签维度:
- 集群名称
- 节点类型
- 节点ID
- 请求是否成功
实现原理
直方图(Histogram)是一种特殊的监控指标类型,它通过采样统计的方式展示监控数据的分布情况。相比简单的平均值,直方图能够提供更丰富的性能分析维度:
- 可以观察到不同耗时区间的请求数量
- 能够识别长尾请求
- 便于计算百分位数(如P99、P95等)
技术实现细节
代码结构变更
-
BrokerMetricsManager类:
- 新增两个Histogram类型的成员变量:
createTopicTime和createSubscriptionTime - 在初始化方法中完成指标的注册和配置
- 新增两个Histogram类型的成员变量:
-
BrokerMetricsConstant类:
- 新增常量定义,包括指标名称、标签名称等
- 特别添加
LABEL_REQUEST_IS_SUCCESS标签,用于区分成功和失败的请求
-
AdminBrokerProcessor类:
- 在Topic创建和订阅组创建的处理逻辑中插入耗时统计代码
- 捕获操作开始和结束时间戳
- 根据操作结果设置相应的标签值
关键实现点
-
时间统计精度:
- 使用System.currentTimeMillis()或System.nanoTime()获取高精度时间戳
- 考虑网络传输时间与本地处理时间的区分
-
异常处理:
- 捕获创建过程中的各种异常情况
- 标记为失败请求的同时记录耗时
-
标签设计:
- 系统Topic标记有助于区分用户创建的Topic和内部系统Topic
- 请求成功/失败标签便于分析错误请求的耗时特征
应用价值
-
性能监控:
- 实时掌握Topic和订阅组创建操作的性能表现
- 及时发现性能劣化趋势
-
容量规划:
- 通过历史数据分析系统扩容对创建操作的影响
- 为资源分配提供数据支持
-
故障诊断:
- 快速定位创建操作耗时异常的根本原因
- 区分网络问题、存储问题或计算资源问题
-
SLA保障:
- 量化评估系统管理功能的性能表现
- 为服务等级协议提供数据支撑
最佳实践建议
-
告警配置:
- 针对P99耗时设置合理阈值
- 关注失败请求的比例变化
-
数据分析:
- 结合其他指标(如CPU、内存、IO)进行关联分析
- 定期生成性能趋势报告
-
优化方向:
- 识别耗时较长的操作场景
- 针对性地优化元数据管理流程
这一监控能力的增强,使得RocketMQ运维团队能够更全面地掌握系统管理功能的性能状况,为系统稳定性和性能优化提供了有力支撑。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210