Drools项目中BigDecimal除法运算的精度处理问题分析
问题背景
在Drools规则引擎的非可执行模型(drools-engine-classic)中,当使用JIT编译(Just-In-Time Compilation)后,涉及BigDecimal除法运算的规则约束可能会抛出ArithmeticException异常。具体表现为当规则约束中包含类似value / 7B >= 0这样的表达式时,在执行过程中会抛出"Non-terminating decimal expansion; no exact representable decimal result"错误。
问题本质
这个问题的根本原因在于BigDecimal的除法运算特性。BigDecimal在进行除法运算时,如果结果是一个无限循环小数(如1除以3),而开发者没有指定精度和舍入模式,就会抛出ArithmeticException。这是一种保护机制,防止开发者无意中使用不精确的计算结果。
技术细节分析
在Drools的不同执行模式下,这个问题表现出不同的行为:
-
MVEL解释执行模式(JIT编译前):使用
bigDecimal1.divide(bigDecimal2, MathContext.DECIMAL128)进行计算,指定了DECIMAL128的精度上下文,因此不会抛出异常。 -
可执行模型模式:同样使用了带有精度上下文的除法运算。
-
JIT编译后的非可执行模型:生成的字节码中使用了简单的
bigDecimal1.divide(bigDecimal2),没有指定精度上下文,导致在遇到无限循环小数时抛出异常。
解决方案
修复方案的核心是确保在所有执行路径下都使用一致的精度处理方式。具体实现是修改ASMConditionEvaluatorJitter类,使其在生成BigDecimal除法运算的字节码时,也使用DECIMAL128精度上下文,与MVEL和可执行模型保持一致。
技术启示
这个问题给我们几个重要的技术启示:
-
数值计算的一致性:在规则引擎这类系统中,确保不同执行路径下数值计算行为的一致性至关重要。
-
BigDecimal的使用规范:使用BigDecimal进行除法运算时,必须考虑精度和舍入问题,特别是在金融等对精度要求高的场景。
-
JIT编译的边界情况:在实现JIT编译器时,需要特别注意语言特性和边界情况的处理,确保生成的代码与解释执行的语义完全一致。
最佳实践建议
基于这个问题的分析,建议开发者在Drools中使用BigDecimal时:
-
明确指定除法运算的精度和舍入模式,避免依赖默认行为。
-
在规则测试中,特别关注涉及除法运算的边界情况。
-
考虑在不同执行模式下测试规则,确保行为一致。
-
对于关键业务规则,可以考虑使用可执行模型,以获得更一致的执行行为。
这个问题虽然看似简单,但它揭示了规则引擎实现中数值处理一致性的重要性,特别是在不同执行路径下的行为一致性。通过这个修复,Drools确保了BigDecimal除法运算在所有执行模式下都能提供一致且可靠的结果。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00