Datacamp-Courses 项目启动与配置教程
2025-05-21 23:30:38作者:傅爽业Veleda
1. 项目目录结构及介绍
Datacamp-Courses 项目是一个包含多个 Jupyter Notebook 文件的集合,这些文件是 DataCamp 课程的学习笔记。以下是项目的目录结构:
Datacamp-Courses/
│
├── Advanced NLP with spaCy/
├── Analyzing Social Media Data in Python/
├── Building Data Engineering Pipelines in Python/
├── Creating Robust Python Workflows/
├── Credit Risk Modeling in Python/
├── Customer Segmentation in Python/
├── Datacamp-ABTest/
├── Designing Machine Learning Workflows in Python/
├── Dimensionality Reduction in Python/
├── Exploratory Data Analysis in Python/
├── Feature Engineering for Machine Learning in Python/
├── Financial Forecasting in Python/
├── Forecasting Using ARIMA Models in Python/
├── Fraud Detection in Python/
├── Generalized Linear Models in Python/
├── Image Processing/
├── Improving Your Data Visualizations in Python/
├── Intro Tensorflow/
├── Introduction to Linear Modeling in Python/
├── Introduction to Portfolio Risk Management in Python/
├── Machine Learning for Finance/
├── Machine Learning for Time Series Data in Python/
├── Model Validation in Python/
├── Network Analysis in Python (Part 1)/
├── Network Analysis in Python (Part 2)/
├── Object-Oriented Programming in Python/
├── Optimizing Python Code with pandas/
├── Predicting Customer Churn in Python/
├── Sentiment Analysis in Python/
├── Supply Chain Analytics in Python/
├── Time Series Analysis in Python/
├── Unit Testing for Data Science in Python/
├── Web Scraping in Python/
├── Bitcoin.ipynb
├── Business_Science_Problem_Framework.pdf
├── LICENSE
└── Sharpe Ratio.ipynb
每个文件夹代表一个特定的课程或主题,包含了相关的 Jupyter Notebook 文件。这些文件可以用来复习课程内容或进行进一步的学习和练习。
2. 项目的启动文件介绍
该项目没有特定的启动文件。用户可以直接打开任意一个 Jupyter Notebook 文件开始学习。例如,如果你想学习高级自然语言处理(NLP)使用 spaCy 的课程,你可以打开 Advanced NLP with spaCy 文件夹中的 Notebook 文件。
3. 项目的配置文件介绍
该项目没有配置文件。由于这是一个 Jupyter Notebook 的集合,配置通常在 Jupyter Notebook 环境中进行。用户需要确保他们的系统上安装了 Jupyter Notebook 和所有必要的依赖项,例如 Python 和相关的库。
如果需要在一个特定的环境中运行这些 Notebook,可能需要创建一个虚拟环境并安装所需的 Python 包。以下是一个基本的步骤示例:
# 创建虚拟环境
python -m venv venv
# 激活虚拟环境
source venv/bin/activate # 在 Windows 中使用 `venv\Scripts\activate`
# 安装必要的包
pip install notebook pandas numpy scikit-learn spacy
确保安装了所有必要的库之后,就可以打开 Jupyter Notebook 并开始学习课程了。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134