advanced-rag 项目亮点解析
2025-06-13 01:28:57作者:仰钰奇
1. 项目的基础介绍
advanced-rag 是一个开源项目,旨在深入探讨在构建检索增强生成(Retrieval Augmented Generation, RAG)系统时遇到的问题与解决方案。该项目包含一系列用于掌握大型语言模型(LLM)与 RAG 的 Jupyter 笔记本,适用于企业环境下的各种复杂场景。项目基于 MIT 许可证开源,可在 edX 上找到相关课程。
2. 项目代码目录及介绍
项目目录结构清晰,主要包括以下几个部分:
data: 存储项目中使用的数据文件。exercise: 包含课程练习相关的笔记本文件。images: 存储项目中使用的图像文件。themes: 可能包含项目使用的自定义主题文件。.gitignore: 指定 Git 忽略的文件和目录。01_simple_rag.ipynb: 介绍 RAG 的基础概念与实现的笔记本。02_embedding_model.ipynb: 探讨嵌入模型在 RAG 系统中的应用与限制。03_semantic_chunking.ipynb: 研究语义分块在 RAG 系统中的处理过程。04_contextual_retrieval.ipynb: 深入策略以实现 RAG 系统中的上下文检索。05_reverse_hyde.ipynb: 探索 RAG 系统中的 Reverse Hyde 技术以解决上下文相关性和查询歧义。06_hybrid_search.ipynb: 讨论在 RAG 系统中集成混合搜索能力的策略。07_reranking.ipynb: 讨论在 RAG 系统中进行重排的重要性,以优化初始检索结果。08_multimodal_pdf.ipynb: 探索从图像中进行检索的可能性,不限于文本。
3. 项目亮点功能拆解
项目的亮点之一是详细介绍了 RAG 的各个组成部分和实现方法,从简单的 RAG 流程到复杂的混合搜索和多模态检索,都有详尽的笔记本教程。
4. 项目主要技术亮点拆解
- 嵌入模型: 项目探讨了嵌入模型在 RAG 系统中的作用,包括如何使用特定领域的嵌入来提高检索效果。
- 语义分块: 介绍了如何通过语义分块来优化长文档的检索。
- 上下文检索: 对如何有效处理数值数据和表格信息的上下文检索进行了深入分析。
- 多模态检索: 探索了如何从图像和其他非文本元素中提取信息,并与文本检索方法结合,实现更全面的搜索能力。
5. 与同类项目对比的亮点
与同类项目相比,advanced-rag 的亮点在于它不仅提供了 RAG 的理论知识,还通过具体的实践教程帮助开发者深入理解并掌握 RAG 的构建与应用。此外,项目涵盖了从简单到复杂的多场景和多技术层次的案例分析,对于希望在企业环境中应用 RAG 的开发者来说,这是一个宝贵的资源。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
819
391
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
134
49
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
555
110