NEARCore 2.5.0-rc.1版本技术解析:分片重构与性能优化
NEAR是一个采用分片技术的区块链平台,旨在实现高吞吐量和可扩展性。近期发布的NEARCore 2.5.0-rc.1版本引入了多项重要改进,包括分片重构V3和跨分片带宽调度器等核心协议变更,以及多项非协议层面的性能优化。本文将深入解析这些技术改进的实现原理及其对网络的影响。
协议层重大变更
分片重构V3
NEARCore 2.5.0-rc.1版本最核心的改进之一是实现了分片重构V3机制。这一改进通过协议版本75和76分两个阶段实施,将网络分片数量从6个增加到8个,显著提升了网络的处理能力。
分片重构过程中,节点需要将被重构的分片数据加载到内存中。对于验证节点而言,由于它们通常配置了单分片跟踪和内存Trie(memtrie)功能,这一过程影响较小。但对于RPC节点、归档节点等需要跟踪全部分片的节点类型,在重构完成前将面临较高的内存需求。
特别值得注意的是,从这个版本开始,分片ID(ShardIds)将不再是有序的数字标识符,而是任意的唯一标识符。这一改变为未来更灵活的分片管理奠定了基础。
跨分片带宽调度器
协议版本74中引入了跨分片带宽调度器(NEP-584),这一创新机制负责管理分片间的收据(receipt)传输。通过优化跨分片通信的资源分配,该调度器显著提高了跨分片交易的吞吐量,增强了网络的水平扩展能力。
非协议层改进
状态同步优化
本版本改进了状态同步机制,将状态同步点调整到当前epoch内。节点现在需要在epoch开始后等待几个区块才能启动状态同步过程。这一改变虽然不涉及协议变更,但需要与协议版本74配合启用。
状态同步服务提供商也进行了变更,新的"fast-state-parts"存储桶取代了原有的"state-parts"。用户需要相应调整配置中的state_sync.sync.ExternalStorage.location.GCS.bucket参数。
交易验证并行化
通过并行化交易验证过程(包括签名检查),在verify_and_charge_transaction之前完成这些操作,显著提高了节点的交易处理吞吐量。这一优化对于提升网络整体性能具有重要意义。
升级计划与注意事项
NEAR网络将通过三次协议升级逐步部署这些改进:
- 协议版本74投票将于2025年2月16日18:00 UTC开始
- 协议版本75投票将于次日同一时间启动
- 协议版本76投票随后在2月18日开始
在分片重构期间,跟踪状态的节点(包括RPC、归档、索引器等)需要至少64GB内存来成功完成重构过程。即使是排名21-25的潜在验证节点,也建议配置64GB内存以确保稳定运行。重构完成后,不加载内存Trie的节点可以适当降低内存配置。
若节点在重构过程中崩溃,可能会遇到存储错误。此时可通过neard flat-storage resume-resharding命令恢复重构过程,然后重新启动节点。
总结
NEARCore 2.5.0-rc.1版本通过分片重构V3和跨分片带宽调度器等创新,显著提升了网络的扩展性和性能。这些改进使NEAR能够更好地支持大规模去中心化应用,同时为未来的进一步扩展奠定了基础。节点运营者需要特别注意升级过程中的硬件要求和操作步骤,以确保平稳过渡。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00