解决stable-diffusion-webui-directml项目中AMD显卡无法识别的问题
2025-07-04 12:58:40作者:胡唯隽
在stable-diffusion-webui-directml项目中,许多AMD显卡用户遇到了"Torch is not able to use GPU"的错误提示。这个问题主要出现在Windows系统下,特别是使用RX 7800 XT、RX 6800、RX 6600等较新AMD显卡的用户。本文将详细介绍问题的原因和多种解决方案。
问题现象
当用户尝试启动stable-diffusion-webui-directml时,系统会报错提示Torch无法使用GPU,并建议添加--skip-torch-cuda-test参数来跳过检查。这个问题的根源在于PyTorch无法正确识别AMD显卡的DirectML支持。
解决方案
方法一:添加DirectML支持参数
最简单的解决方案是在webui-user.bat文件中添加--use-directml参数:
- 打开webui-user.bat文件
- 找到COMMANDLINE_ARGS=这一行
- 修改为:
set COMMANDLINE_ARGS=--use-directml - 保存文件并重新启动
方法二:手动安装torch-directml
如果上述方法无效,可以尝试手动安装torch-directml:
- 编辑requirements_versions.txt文件
- 添加一行:
torch-directml - 打开命令提示符
- 导航到项目目录
- 运行:
.\venv\scripts\activate - 然后运行:
pip install -r requirements.txt
方法三:完整修复流程
对于更复杂的情况,可以尝试以下完整修复流程:
- 确保项目文件夹名称为"stable-diffusion-webui-directml"
- 按照方法二安装torch-directml
- 在webui-user.bat中添加--use-directml参数
- 可选的额外参数(适用于显存较小的显卡):
set COMMANDLINE_ARGS=--use-directml --medvram --no-half --precision full --no-half-vae --opt-sub-quad-attention --opt-split-attention-v1
常见问题排查
- 参数位置错误:确保--use-directml参数紧跟在COMMANDLINE_ARGS=后面,中间不要有其他内容
- 文件夹名称错误:确认项目文件夹名称包含"-directml"后缀
- 依赖冲突:如果遇到httpx冲突,可以尝试运行:
pip install httpx==0.24.1 - 参数变更:注意旧参数--backend=directml已改为--use-directml
性能优化建议
成功解决问题后,可以根据显卡性能调整参数:
- 大显存显卡(如RX 7800 XT):可以移除--medvram和--lowvram参数
- 中等显存显卡(如RX 6700 XT):保留--medvram
- 小显存显卡(如RX 6600):使用--lowvram
通过以上方法,大多数AMD显卡用户应该能够成功在Windows系统下运行stable-diffusion-webui-directml项目。如果问题仍然存在,建议检查显卡驱动是否为最新版本,并确认系统环境配置正确。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp博客页面工作坊中的断言方法优化建议3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp课程页面空白问题的技术分析与解决方案9 freeCodeCamp课程视频测验中的Tab键导航问题解析10 freeCodeCamp课程中屏幕放大器知识点优化分析
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
241
2.38 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1 K
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
590
118
Ascend Extension for PyTorch
Python
79
112
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
56