Search-R1 使用与部署指南
2026-01-30 04:10:40作者:牧宁李
1. 项目介绍
Search-R1 是一个基于 veRL 的强化学习训练框架,旨在训练能够进行推理和调用搜索引擎的大型语言模型(LLM)。通过规则基础的奖励机制(RL),3B 基础模型(如 Qwen2.5-3b-base 和 Llama3.2-3b-base)能够自主发展推理和搜索引擎调用能力。
2. 项目快速启动
环境准备
首先,创建并激活 Python 虚拟环境:
conda create -n searchr1 python=3.9
conda activate searchr1
安装必要的依赖:
pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu121
pip3 install vllm==0.6.3
pip3 install flash-attn --no-build-isolation
pip install wandb
如果需要使用本地检索器作为搜索引擎,还需要安装以下环境:
conda create -n retriever python=3.10
conda activate retriever
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.1 -c pytorch -c nvidia
pip install transformers datasets
conda install -c pytorch -c nvidia faiss-gpu=1.8.0
pip install uvicorn fastapi
数据准备
下载并解压索引和语料库:
save_path=/the/path/to/save
python scripts/download.py --save_path $save_path
cat $save_path/part_* > $save_path/e5_Flat.index
gzip -d $save_path/wiki-18.jsonl.gz
处理 NQ 数据集:
python scripts/data_process/nq_search.py
启动检索服务
conda activate retriever
bash retrieval_launch.sh
模型训练
conda activate searchr1
bash train_ppo.sh
3. 应用案例和最佳实践
推理使用
启动本地检索服务后,可以进行推理:
conda activate searchr1
python infer.py
你可以修改 infer.py 文件中第 7 行的 question 变量,将其设置为你感兴趣的问题。
自定义数据集
你可以使用自己的数据集进行训练。数据集应该是一个包含问题、答案和相关信息的字典。可以参考 scripts/data_process/nq_search.py 文件中的数据处理示例。
自定义搜索引擎
可以启动一个本地或远程的搜索引擎服务,并让 LLM 通过调用搜索 API 来使用它。可以参考 search_r1/search/retriever_server.py 文件来启动一个本地检索器服务。
4. 典型生态项目
Search-R1 可以与多种类型的开源项目配合使用,例如:
- 检索器项目,如 Elasticsearch、Faiss 等。
- 自然语言处理工具,如 Transformers、SpaCy 等。
- 强化学习库,如 Stable Baselines、Ray(RLlib) 等。
通过整合这些项目,可以构建更加强大和灵活的搜索和推理系统。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350